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Abstract - The additive x additive relationship coefficient needs to be calculated in
order to compute genetic covariance between relatives. For linked loci, the compu-
tation of this coefficient is not as simple as for unlinked loci. Recursive formulae
are given to compute the additive x additive relationship coefficient for an arbitrary
pedigree. Based on the recursive formulae, numerical values of the desired coefficient
for selfed or outbred individuals are examined. The method presented provides the
means to compute the additive x additive relationship coefficient for any situation
assuming linkage. The effect of linkage on the covariance was examined for several
pairs of relatives. In the absence of inbreeding, linkage has no effect on the parent-
offspring covariance. All of the other relationships examined were affected by linkage.
As recombination rate increased from 0.1 to 0.5, in descending order of percentage
change in the covariance, the relationships ranked as follows: first cousins, double
first cousins, grandparent-grandoffspring, half sibs, aunt-nephew, full sibs, parent-
offspring. With inbreeding, the parent-offspring covariance is also affected by linkage.
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Résumé - Effet du linkage sur les covariances entre apparentés pour les in-
teractions de type additif x additif. En cas d’épistasie, le calcul de la covari-
ance génétique entre apparentés nécessite le calcul du coefficient de parenté pour
les termes d’interaction additif x additif. Quand les loci sont liés, le calcul de ce
coefficient n’est pas aussi simple que dans le cas de loci indépendants. Des for-
mules récursives sont données pour calculer le coefficient de parenté additif x additif



dans le cas d’un pedigree quelconque. À partir des formules récursives, des valeurs
numériques correspondant au cas d’individus issus d’autofécondation et de par-
ents sexués sont examinées. La méthode présentée fournit le moyen de calculer
le coefficient de parenté additif x additif pour toute situation impliquant le link-

age. L’effet du linkage sur la covariance a été examiné pour plusieurs paires
d’apparentés. En l’absence de consanguinité, le linkage n’a pas d’effet sur la
covariance parent-descendant. Toutes les autres parentés examinées ont été af-
fectées par le linkage. Quand le taux de recombinaison augmente de 0,1 à 0,5,
les parentés présentées suivant l’ordre décroissant de sensibilité des covariances
sont les suivantes : cousins germains, cousins issus de germains, grands-parents
petits-fils, demi-frères, oncle-neveux, pleins-frères, parent-descendants. En cas de
consanguinité, la covariance parent-descendant est aussi affectée par le linkage.
&copy; Inra/Elsevier, Paris
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1. INTRODUCTION

Genetic covariance between relatives can be expressed as a linear combi-
nation of genetic variance components. In order to compute the covariance
between relatives, coefficients associated with the variance components need to
be calculated from pedigree relationships. Additive and dominance relationship
coefficients can be computed through several methods for arbitrary pedigrees
[4-6, 8, 10!. The additive x additive relationship coefficient between unlinked
loci can be obtained as the square of the additive relationship coefficient (7!.
When loci are linked, the additive x additive relationship coefficient cannot

be computed simply as the square of the additive relationship coefficient. Now
this coefficient may depend on the recombination rate and it has been derived
for several common relationships [2, 3, 12). A general approach for computing
the additive x additive relationship coefficient for collateral relatives has been
developed by Schnell [9]. For general pedigrees, this approach becomes very
complicated. More recently, Thompson !11! has described a recursive approach
for computing two-locus identity probabilities that can be applied to any
pedigree.

In this paper we present independently derived recursive formulae that
are different from those of Thompson for computing the additive x additive
relationship coefficient for an arbitrary pedigree. These formulae can be used to
examine the effect of linkage on the additive x additive relationship coefficient
for any pair of relatives. Based on the results obtained in this paper, the
situations when the effect of linkage on the additive x additive covariance
between relatives can be ignored are examined. Some examples are given here
and a C++ implementation of the recursive method with some numerical
examples is available on the Web at http://www.public.iastate.edu/Nrohan
by following the link Software.

2. THEORY

Additive x additive coefficients are generated by epistatic effects in the
covariance. Consider a two-locus model with an arbitrary number of alleles



at each locus. The additive x additive genotypic value of an individual I with
alleles k and k’ at the first locus and alleles 1 and I’ at the second locus can be
written as

where 6 is the additive x additive effect. Similarly, the additive x additive

genotypic value for an individual J with alleles n, n’, p and p’ is

The additive x additive contribution to the covariance between I and J can
be written as a sum of 16 covariances.

Each of the 16 covariances can be written as the product between one-fourth
of the additive x additive variance component (VAA) and a probability that
pairs of alleles are identical by descent (IBD). For example COV(bkl, 6,,,) in
equation (3) is

where Pr(k - n, I - p) is the probability that the allele k of individual I is
IBD with allele n of individual J and allele of I is IBD with allele p of J. The
additive x additive relationship coefficient (!I,!) is one-fourth of the sum of
the 16 IBD probabilities corresponding to the 16 covariances in equation (3).
Each of these probabilities can be obtained recursively as explained below.

3. RECURSIVE COMPUTATION OF IBD PROBABILITIES

The principle underlying the recursive method for computing IBD probabilities
is first described for a single locus. Then we show how to compute recursively
IBD probabilities for two loci.

3.1. Single-locus computations

The basic principle underlying the recursive method is that the maternal
(paternal) allele at a given locus in an individual is a copy of either the maternal
or paternal allele at the same locus of its mother (father). To illustrate, consider
an individual I with parents S and D. The maternal and paternal alleles of
I, for example, at locus A are denoted by AI and A{. Based on the principle
mentioned above, the probability that the maternal allele of I is IBD to the
paternal allele of relative J can be written as



where, for example, AI f- AB is the condition that A1 is a copy of !4!. If J
is not a descendent of I, equation (5) can be simplified to

However, equation (6) is not true when J is a descendent of I, because
now the IBD relationships between A! and AD and between A! and AD
depend on whether AI is a copy of AD or of !4!,. In order to take advantage
of equation (6), it is necessary to determine whether I or J is younger, and

always recurse on the younger allele. Using this procedure the recursion can
be performed until both alleles in an IBD relationship are from founders. In
founders, the IBD probability between two different alleles is defined to be null
and is unity for an allele with itself. Several authors have used recursion to
compute IBD probabilities between alleles at a single locus [6, 8, 10!.

3.2. Two-locus computations

The principle used here is, as for the single-locus case, that the maternal
(paternal) allele of an individual can be traced back to its mother’s (father’s)
maternal or paternal allele. Consider computing the additive x additive rela-
tionship coefficient (1)I,J) between I and J, where I is younger than J. The
parents of I are denoted by S and D. Using the same notation as in the single-
locus case for alleles at locus B, the probability in equation (4) can be written
as

where we have assumed that k and l are the maternal alleles of I, and n
and p are maternal alleles of J. For notational simplicity the probability in
equation (7) will be denoted by Pr((Al , BI ) - (Am, BJ)]’ Now, !1, can be
written as

Note that the pairs of alleles from I can be classified into two types: those
that can be thought of as being either a recombinant gamete from I or those
that can be thought of as being a non-recombinant. For example, in the first



probability the pair of alleles from I is of the non-recombinant type. This pair is
a copy of either one of the two non-recombinant or one of the two recombinant
gametes of D. Thus, using recursion, this probability can be written as

where r is the recombination rate between A and B. The pairs of alleles from
I in the first eight probabilities are of the non-recombinant type, and can be
computed as shown in equation (8). The pairs of alleles from I in the last eight
probabilities are of the recombinant type. For example, in the ninth probability
the pair of alleles from I is (Am, BI ). In this pair (Am) is either the maternal
or the paternal allele of D, and (BI ) is either the maternal or the paternal
allele of S. Thus, using recursion, the ninth probability can be written as

This probability is not a function of the recombination rate between A and
B because (A1 ) and (Bf) are inherited independently from D and S.

In the two IBD probabilities computed above, the pair of alleles that
were traced back were from the same individual. However, when recursion is
continued it will be necessary to trace back alleles that belong to two different
individuals. For example, if S and D are younger than J, computing the
first probability in equation (9) will require tracing back alleles from S and
D to alleles of their parent. General rules to compute IBD probabilities that
accommodate all cases encountered in recursion are described below.

Consider computing Pr[(Ax, B!) == (Aw , Bz)], where alleles in the first
pair are from individuals X and Y, alleles in the second pair are from individuals
W and Z, and superscripts !, y, w, z = m or f . Without loss of generality,
we assume that X is younger than W and Y is younger than Z. All cases
encountered in recursion can be classified into two types: where (AX, BY) is of
the non-recombinant type (type-1); or where (!4!-,B!) is of the recombinant

type or where AX and BY are from different individuals (type-2). Rules for
recursion will be described separately for type-1 and type-2 cases.



3.2.1. Recursion for type-1 cases

Type-1 cases are encountered when X = Y and x = y. Now, if the condition

is true, then Pr[(Ax , By) (Aw , BZ)! = 1; if the condition c is not true, but
all four alleles are from founders then, Pr!(AX, By (Aw, B’)] = 0, because
different alleles in founders are assumed to be not IBD.

Suppose condition c is not true, none of the four alleles is from a founder,
and alleles at one of the two loci are the same. For example, if X = W,Y ! Z,
x = w = m and z = f, then Pr!(AX, BY ) _ (A!,, Bz)! can be recursively
computed as

where P is the mother of X. Here, AX and !4! are the same allele, and,
therefore, in the desired probability we have only three different alleles. As a
result, only Hi is not traced back to its parental alleles. Note that here and in
all type-1 cases both alleles AX and BY are traced back to the same parent;
as a result, recombination rate enters into the formula for recursion.

Suppose condition c is not true, none of the four alleles is from a founder,
and alleles at neither of the two loci are the same. For example, if X # W,
Y # Z x = m, w = m and z = f, then Pr!(AX, BY ) - (Am, Bi)] can be
recursively computed as

where P is the mother of X. This is the same situation given by equation (8).

3.2.2.Recursion for type-2 cases

Type-2 cases are encountered when X = Y and x 7! y or when X # Y. Even
here, if the condition



is true, fr[(!4!, BY) - (!4!, B § ) = 1. If condition c is not true and all four al-
leles are from founders then, fr[(7l!-, BY) - (!4!, Bz)] = 0. Suppose now that
X = Y = Z = W but z # y and w # z. For example, if x = m, y = f , w = f
and z = m, then

where (AX, Bm) is of the non-recombinant type. Recursion can then be done
as described for type-1 cases.

Suppose that condition c is not true and alleles at only one of the two
loci are from founders. Then, if the alleles from the founders are not the

same, P7-[(!,.S!) = (Aw , Bz )] = 0; on the other hand, if the alleles from
the founders are the same, recursion will be applied to the other locus. For
example, if AX and Aw are the same founder allele, Y !4 Z, x = w = m, y = m
and z = f, then Pr!(AX, BY) - (.4!,.Bj!)] can be recursively computed as

where R is the mother of Y. Here, AX and !4! are the same allele, and it is

not traced back to parental alleles because X = W is a founder. As a result,
only By is traced back to its parental alleles. Note that here and in all type-2
cases the alleles Ax and BY are traced back to different parents; as a result,
recombination rate does not enter into the formula for recursion.

Now suppose condition c is not true, none of the four alleles is from founders,
but alleles at one of the two loci are the same. For example if, X = W, Y ! Z,
x = w = m, y = m and z = f, then alleles at locus A are the same and
fr[(!4!,-B!-) = (Aw , Bz )] can be written recursively as

where P is the mother of X and R is the mother of Y. Again, !4!- and !4!, are
the same allele, and as a result in the desired probability we have only three
different alleles. Thus, the only allele that is not traced back is Bfzl

Finally, suppose condition c is not true, none of the four alleles is from
a founder, and alleles at neither of the two loci are the same. For example,



X:A W, Y # Z, x = m, y = m, w = m and z = f, then Pr!(AX, BY ) _
(!4!, Bi)] can be recursively computed as

where P is the mother of X and R is the mother of Y. Now, in the desired
probability we have four different alleles, and only AX and By are traced back.

4. NUMERICAL EXAMPLES

The recursive formulae are used here to examine the effect of linkage on
the additive x additive relationship coefficient. Cockerham [2] stated that the
covariance between two relatives, where one is an ancestor of the other, is not
affected by linkage. Schnell [9] as well as Chang [1] showed that the previous
statement is not always true. It can be shown that the covariance between
a parent and its non-inbred offspring is not affected by linkage. However,
the covariance between a parent and its inbred offspring, as well as between
grandparent and grandoffspring, will be affected by linkage.

Consider first the covariance between parent (W) and a non-inbred offspring
(X). The additive x additive relationship coefficient (ox,w) can be computed
using two-locus computations. However, of the 16 probabilities, only four are
non-zero because the parents of X are assumed to be unrelated. For example,
if W is the mother of X, two-locus computation reduces to

where A and B are the two loci. Note that the four probabilities in equation (16)
are of type 1 and as a result we can write

because the recombination rate cancels out in equation (17). As a result the
recombination rate plays no role in the covariance between parent and offspring.



Assume now that X is inbred, its parents being full sibs. Assume also that
the parents of W are unrelated. In this case all 16 probabilities in section 3.2
will have non-zero values, and !X,w is given by

Note that in this case the recombination rate will affect the covariance
between parent and offspring.

Consider now computing the additive x additive relationship coefficient

!G,W between grandparent (W) and grandoffspring (G). Let W be the ma-
ternal grandparent of G, X the daughter of W and the mother of G, and Y
the father of G. Again, OG,W can be written using two-locus computation. As
in the parent-offspring case, there are only four probabilities that are non-zero

because Y is considered to be unrelated to W. Applying equation (11) to the
four probabilities in equation (19) gives

and



As a result !G yv can be written as

which is a function of the recombination rate r.

The recursive method was used to compute numerical values of the additive
x additive relationship coefficient for different relatives and different recombi-
nation rates (table 1). As expected, when linkage is absent (r = 0.5) the additive
x additive coefficient is equal to the square of the additive coefficient. In the
absence of linkage, the genetic covariance will be identical for certain pairs
of relatives. For example, the covariance between grandparent-grandoffspring,
half sibs and aunt-nephew, is equal to 0.25 VA + 0.0625 VAA. However, if loci
are linked, the genetic covariance for these pairs of relatives will not be the same
(table 1). The numerical values of the additive x additive relationship coefficient
increase as the linkage becomes tighter (r becomes smaller). As a result, when
we assume that linkage is absent, the additive x additive variance component
will be overestimated.

Numerical values for the additive x additive relationship coefficient for full
sib and for parent-offspring relationships, after several generations of selfing,
are given in tables II and III. In this design, individuals in generations i are the
offspring of selfed individuals from generation i - 1. The numerical values in
table II are for the relationship between the offspring of a single selfed individual
from generation n. The numerical values in table III are for the relationship
between a parent in generation n and its offspring in generation n + 1. Note
that after t generations, if linkage is absent, the additive x additive relationship
coefficient for full sibs has the same value as the additive x additive relationship
coefficient for parent-offspring. When linkage is present the two values are
different. The additive x additive relationship coefficient of a founder with any
individual obtained through selfing will be always one. The numerical value of
additive x additive relationship coefficient will converge to four, because each
of the 16 probabilities converges to one, after several generations of selfing. As
the number of generations of selfing increases, the effect of linkage decreases.



5. DISCUSSION

This paper describes a recursive method to compute the additive x additive
relationship coefficient for arbitrary pedigrees in the presence of linkage. The
additive x additive relationship coefficient can be described as one-fourth the
sum of 16 two-locus IBD probabilities that can be recursively traced back to
known values. We have given five recursive equations to compute these IBD
probabilities, where the origin of the younger pair of alleles is traced back to
the previous generation.

Thompson [11] gave six recursive equations to address the same problem.
However her approach differs from ours. Some of these differences are briefly
described below using our notation. Thompson’s approach is based on recursive
equations for two-locus IBD probabilities involving only the alleles of parent
P in its offspring X or X’, where P is not Y, W or Z nor an ancestor of any
of them. Further her recursive equations are linear combinations of one- and
two-locus IBD probabilities while our equations are linear combination of only
two-locus IBD probabilities and do not involve one-locus IBD probabilities.

While all the recursive equations given in the present paper are based on
tracing alleles back to the previous generation, not all of Thompson’s [11]
equations are based on this principle. For example, consider equation (8) in



Thompson !11!, which in our notation becomes

where alleles AX and Ay, are from parent P. This equation is obtained by
observing that alleles AX and AX, will be the same with probability one
half; if the two alleles are the same, then the two-locus IBD probability
on the left hand side of equation (25) becomes the one-locus probability
Pr(BY = Bz); if the two alleles are not the same, the two-locus IBD probability
is Pr[(Ap, By) (AP, Bz)!.

In contrast, we trace back the alleles AX and BY to the previous generation.
Suppose x = x’ = m and y = m, then the two-locus IBD probability on the
left hand side of equation (25) becomes



where P is the mother of X and X’, and R is the mother of Y. This is clearly
different from equation (25). Although these two approaches use different
recursive equations the final results for the IBD probabilities are identical.
This demonstrates that there is more than one approach to compute IBD
probabilities by recursion.

Based on the recursive method described in this paper, numerical values
of the desired coefficient for selfed or outbred individuals are given. Using
the computer program available at http://www.public.iastate.edu/Nrohan, the
effect of linkage on the additive by additive covariance can be examined for
any type of relationship. This would be useful to examine the potential bias in
covariance estimates when linkage is ignored. Figure 1 gives the rate of change
in the additive by additive covariance for several relationships. Relationships
with flatter curves are less biased by linkage.

Other applications are in linkage analysis and the identification of pairwise
relationships based on data at linked loci (11!.
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