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Abstract — A variance component analysis was carried out on data from a 20-
year experiment in the rapid inbreeding of purebred and crossbred lines of three
hill breeds of sheep. Parent offspring matings were made over several generations
to produce inbreeding coefficients in lambs of up to 0.59. The traits chosen for
analysis were the live weights at 24 and 78 weeks of age and the ratio of the
densities of secondary and primary skin follicles. A complete model of intralocus
allelic effects was carried out with both additive genetic variance and dominance
variance. The latter was partitioned into components arising from loci which were
homozygous by descent and those that were not. Inbreeding depression was fitted as
a covariate. This model has not been attempted previously in livestock populations.
Crossbred animals were found to exhibit more dominance variance than purebred
animals. Though partitioning of the dominance variance was possible in some of the
data sets considered, estimation of the novel quadratic components was difficult and
provided little evidence of homozygous dominance variance as distinguished from the
familiar random dominance variance (that arising in randomly mated populations).
A pooled dominance model is proposed in which inbred dominance effects have the
same variance as random dominance effects. For live weight the results suggested that
the genetic architecture involved many loci with deleterious recessive alleles, but for
the ratio of follicle density there was no clear explanation for the results observed.
© Inra/Elsevier, Paris
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Résumé — Analyse des composantes de variance pour des données de poids et
de peau concernant des moutons soumis 4 une consanguinité rapide. Une ana-
lyse des composantes de variance a été effectuée sur des données provenant d’une
expérimentation de 20 ans sur la consanguinité rapide de lignées pures et croisées
issues de trois races ovines de montagne. Des accouplements entre parents et descen-
dants ont été effectués sur plusieurs générations en vue de produire des coefficients
de consanguinité élevés (jusqu’a 0,59) chez les agneaux. Les caractéres choisis pour
I’analyse ont été les poids vifs & 24 et 78 semaines d’age et le rapport entre les densités
de follicules cutanés secondaires et primaires. Un modéle complet des effets alléliques
intralocus a été établi avec a la fois une variance génétique additive et une variance
de dominance. Cette derniere a été partitionnée en composantes provenant de loci
homozygotes par descendance mendélienne ou non. La dépression de consanguinité a
été considérée en covariable. Ce modeéle n’a pas été tenté précédemment sur les popu-
lations d’animaux domestiques. Les animaux croisés ont manifesté plus de variance de
dominance que les animaux purs. Bien que la partition de la variance de dominance
ait été possible dans quelques-uns des fichiers considérés, 1’estimation des nouvelles
composantes quadratiques a été difficile et n’a pas fourni de preuve flagrante que la
variance de dominance chez les homozygotes doive étre distinguée de la variance de
dominance classique. Un modeéle de dominance regroupée est proposé dans lequel les
effets de dominance chez les consanguins ont la méme variance que sur I’ensemble de
la population. En ce qui concerne le poids vif, les résultats suggeérent que l’architecture
génétique implique de nombreux loci avec des alléles récessifs déléteres mais que cela
ne semblait pas étre le cas pour le rapport des densités de follicules. © Inra/Elsevier,
Paris

dépression de consanguinité / variance de dominance / maximum de vraisem-
blance restreint / composantes de variance / mouton

1. INTRODUCTION

The genetic analysis of populations undergoing rapid inbreeding is of interest
because the opportunity for protective mutations or haplotypes to accumulate
and obscure our view of the genetic mechanisms involved is minimized. The
principal phenomena predicted from inbreeding are the reduction of genetic
variation within families and the disappearance of heterozygosity. When asso-
ciated with dominant gene action this results in inbreeding depression. Inbreed-
ing depression and its seeming inverse, the heterosis obtained through crossing
of lines, have received much attention over the whole of this century [10, 31].

Nevertheless, the interpretation of these phenomena in terms of genetic vari-
ances and covariances has remained a thorny problem. Harris [9] and Cocker-
ham [3] developed complete mathematical models for the genetic variance of
non-random mating populations. These models were used to predict gene fre-
quency changes in populations undergoing selection [4], and, while some at-
tempts were made to apply them to agricultural populations [5], the models
have for the most part remained computationally too intensive or the testing of
them empirically too demanding to be of practical use. In this paper we report
the results of a complete variance component analysis of an experiment car-
ried out between 1958 and 1974 in Scotland. Thorough analysis of inbreeding
depression and heterosis was possible previously, and these have been reported
for fleece and skin data [29, 30], weight [25], and measures of body size, re-
production, fertility and profitability [26-28]. However, a variance component
analysis including dominance was not possible before now.
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2. MATERIALS AND METHODS

2.1. Design and measurements

Details of the breeding designs and the methods employed in this experiment
are given by Wiener [24] and Woolliams and Wiener [30]. In brief, the breeding
scheme was as follows: six rams and approximately 72 ewes of each of three
hill breeds (Scottish Blackface, South Country Cheviot and Welsh Mountain)
were obtained from a variety of different flocks in 1955. These were used as the
foundation animals in the pedigrees. All nine possible purebred and reciprocally
crossbred matings were made. These were denoted F} for crossbred and Oy for
purebred matings. These mating combinations (e.g. Blackface x Cheviot) are
referred to as groups. Subsequently, within each group, Fy or O; females were
mated to unrelated males, producing F5 and Og offspring. Inbred crosses were
then carried out within the nine groups between offspring and younger parent to
produce as many as 27 lines per group. The pattern of offspring with younger
parent matings was carried on whenever possible for 10 years, resulting in
coefficients of inbreeding of dams as high as 0.375 and coeflicients of inbreeding
of lambs as high as 0.59. Finally, the separate lines that remained were crossed
within the purebred and crossbred groups. A subpedigree consisting of nine
lines from the purebred Blackface group is presented in figure 1.

In this study, we examine three traits: the fleece trait N;/N,, the ratio of
the secondary follicle density to the primary follicle density, and weights at
24 and 78 weeks. Of the many traits measured during this experiment, the
N, /N, trait was chosen because of the nearly linear relationship previously
observed between its mean and inbreeding coefficient. In contrast, the weight
traits tended to show less inbreeding depression for high levels of inbreeding
than for moderate levels. The weight traits were chosen because of the large
number of lambs measured for them (730 purebreds in three groups and 1480
crossbreds in three groups). The N,/N, measurements were made on all lambs
for the Fy/O5 generation onwards until the third inbred generation (F' = 0.5)
using estimation techniques described by Carter and Clarke [2]. The weight
data were analyzed for female lambs only, but these data were run for the full
length of the experiment and included lambs with the highest inbreeding level
(F = 0.59) as well as the line cross lambs.

2.2. Statistical model and method

The mixed linear model,
y=XG+a +a;+dij+e (1)

is made up of fixed effects, 3, and random effects including additive allelic
effects a;, a dominance effect for the interaction between the alleles ¢ and j,
d;;, and a residual effect e. If Hardy—-Weinberg frequencies hold, we have the
following constraints:

E(a;) = E(di;) =0 (2)



46 F.H. Shaw, J.A. Woolliams

where the expectation is taken over all alleles segregating at a single locus.
From these it follows that E(a;d;;) = 0. We can therefore write E(y) = X3 and

var(y) = 2E(a?) + E(dfj) (3)

where the first term on the right-hand side is commonly denoted V4 and the
last V. If y represents a vector of related but not inbred individuals in a
population, we can write the covariance between any two individuals in y as
a linear combination of these two variance components where the coefficients
are based on probabilities that the individuals share alleles or combinations of
alleles at a given locus [8].

If the vector y contains individuals that are inbred, i.e. individuals with non-
zero probabilities of carrying two identical alleles descended from a common
ancestor at a given locus, the situation becomes more complicated. We must
now account for the non-vanishing presence of the term d;; in our equations
since homozygotes increase at the expense of heterozygotes. Thus, for an
individual randomly chosen with an inbreeding coeflicient of F with respect
to the base population,

E(di;) = F' x E(d;) (4)
where F' is the inbreeding coefficient, and
E(y) = XB+pr = XB+ F x E(dy) (5)

The variance of y must now be partitioned into three more components of
variance beyond those already mentioned [9, 23]. These include the complete
homozygous dominance variance,

D3 = E(d3;) — (E(dy))? (6)
and the expectation of the squared inbreeding depression effects,
H* = (B(d))” (7)

The covariance between additive effects and their associated homozygous
dominance effects is non-zero (E{a;d;;) # 0) and upon inbreeding there is a
need to account for this covariance

Again, the expectations involving homozygotes are taken over all alleles seg-
regating at a single locus using the distribution of alleles in the base generation.
The terminology used here is taken from Cockerham and Weir [4]. To emphasize
the difference between homozygous dominance effects and dominance effects in
the context of random mating with no inbreeding, we name variance of the lat-
ter Vg, or random dominance variance [7]. Assuming no epistasis, we use these
same symbols (Va, Vg, D1, D5, H*) in what follows to designate the sum of
the per locus variances and covariances (given earlier) over an arbitrary number
of loci. In the case of the squared inbreeding depression effects, we have

loci

H* =) (B(di))? )
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the sum of the squared per locus inbreeding depressions. If the per locus
inbreeding depressions are all of similar small values and there are very many
loci, H* can be vanishingly small even when the inbreeding depression is large.
It is also noted that if the trait is controlled by a single locus, H* will be the
square of the inbreeding depression as calculated by regression of the phenotype
on the inbreeding coefficient.

The variances of and covariances between individuals of known pedigree
are expressed as linear combinations of these five variance components with
coefficients based on the appropriate probabilities of identity of alleles by
descent. The probability measures involve combinations of four alleles in two
individuals [3] of which there are 16 if maternal and paternal gametes are
distinguished and nine if they are not. In the case of the present analyses,
loci affecting the trait are assumed to be autosomal, so the nine probability
measures are sufficient. Cockerham [3] and Smith and Maki-Tanila [20] gave
elegant recursive algorithms for finding these probabilities and in the latter
case, finding directly the inverse of the covariance matrix of an expanded list
of allelic additive and dominance effects. Here, we used Cockerham’s approach
to write the matrix V or phenotypic covariance matrix,

V =var(y) = V4aA + V4D + DiMp, + DjMp; + H*Mg- +V.I  (10)

where the matrices A, D, Mp,, Mp; and Myg- are the appropriate relationship
matrices. In the case of the weight data, a maternal environmental variance
component and an appropriate incidence matrix were also added.

The restricted log likelihood function,

1
I, = —i[const +log |[V|+log | X'V !IX|+ (y - XB)V 1y — XB)] (11)

where [ is the generalized least squares solution for the fixed effects, was
maximized in the components of variance using the Fisher scoring algorithm
[14, 18]. The regression of the phenotype on the inbreeding coefficient F' is also
included as a covariate which, in the absence of selection bias, will predict the
inbreeding depression.

In the Fisher scoring algorithm, the inversion of V cannot be avoided and
this restricts its use to relatively small or felicitously structured data sets such
as those here. Variance component analysis, using the approach of Smith and
Maki-Tanila [20] for the inversion of the mixed model equation coefficient
matrix C along with recently developed likelihood maximization algorithms
[15, 16], is plausible for larger data sets, although the dimension of C might
become very large [20].

All of the data were analyzed with year of birth included both as a random
and a fixed effect. The results of these analyses were not qualitatively different,
with significant year variation but no long-term trend. Reported results in all
cases are from analyses in which year of birth was included as a fixed effect.

Separate variance component analyses were run on the six different purebred
and crossbred combinations. To detect more general behavior and to boost sam-
ple sizes, the three crossbred combinations were combined into one crossbred
data set and the three purebreds were combined into a purebred data set. In
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these combined analyses, a different covariate was fitted for inbreeding depres-
sion on each purebred and on each crossbred combination. Different levels for
the other fixed effects were also included so that the only constraint present in
the combined analyses that was absent from the separate analyses was that all
groups were assumed to have the same genetic, maternal environmental and
residual variances. Likelihood ratio tests were used to evaluate the significance
of this constraint. Whenever fixed effect estimates (e.g. inbreeding depression
estimates) from different analyses were compared, the analyses were assumed
to be independent.

As well as pooling the purebreds and the crossbreds, the potential power
of the analysis was also increased by combining Vy, and D3 into an agregate
dominance component, Vp, associated with the combined relationship matrix
D+ MD;. Since in this model the dominance variance is not partitioned
into separate homozygous and random components, we call it the ‘pooled
dominance’ model. It includes, along with V4 and Vp, the covariance between
additive and homozygous dominance effects D;.

In all analyses, significance levels for components were tested by a likelihood
ratio test in the following order: V,, V4, Vi, (for weight), V., D3 and D;.
Standard errors increased as more components were added to the model. The
standard errors reported are those corresponding to when all components are
fitted, so that they do not reflect the levels of significance attributed by the
likelihood ratio test that was used to test for a particular component’s presence.
Likelihood ratios were compared to the appropriate x? distributions, i.e. a 50:50
mixture of x2(0) and x?(1) for null hypotheses of a single variance component
on the boundary of the parameter space and x?(p) for p variance components
constrained in the interior [19].

The decision to analyze separately purebred and crossbred data was made
because a combined analysis would constrain the variance components from
very different populations to be the same. The constraint that this would be the
case in the combined purebred data alone was found to be highly significant (see
Results). An analysis including all animals would be feasible computationally,
though difficult.

Recently, several studies have addressed the problem of analyzing crossbred
data [11, 12, 22]. The methods which have been developed use the variance
components associated with the constituent purebred parental populations
and, in the case of dominance, variance components associated with the
crossbreds, to predict genetic values [11]. Estimation of the 26 covariance
components associated with a general two breed crossbreed pedigree has not
yet been attempted; however, the theory is fully developed and methods such
as those employed here would suffice. In this paper, however, we do not include
purebred and crossbred genotypes in the same data set and thus have no need
to calculate purebred by crossbred genotypic covariances. Crossbred groups
sharing a purebred parental origin are included in a single analysis, but the
covariances between individuals in different groups would be very small since
no mating takes place between the groups in the many generations after they
are established. We therefore assume the groups to be independent and take
the F»/O2 generation to represent the base population for each group. In so
doing, we reduce the number of covariance components for two purebred groups
and its associated crossbred group from 26 to 15.
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2.3. Simulation study

Although strict attention was paid that no artificial selection should take
place during the experiment, it was unavoidable that as the levels of inbreeding
increased, many of the individual lines died out (figure ). This natural selection
clearly favors lines that exhibit less inbreeding depression for fitness traits. A
simulation study was carried out to assess the affect on variance component
estimation of loss of lines due to natural selection.

Populations of potentially 500 were simulated based on ten seven-generation
pedigrees similar to those found in the experiment and shown in figure 1. Each
pedigree consisted of eight unrelated founders mated in two groups of one sire
and three dams. The second generation consisted of six pairs of full-sibs in
two half-sib groups. The half-sib groups were then crossed to produce six non-
inbred progeny in the third generation. These third-generation individuals were
crossed with one of their parents to produce the first inbred generation (fourth
generation). This crossing was followed by three more generations of offspring
by youngest parent mating. After the first generation, then, each individual was
associated with, and crucial to the continued propagation of one of six different
lines.

Each founder was assigned two unique alleles at each of 30 loci (480
independent alleles in each of ten pedigrees per replicate data set). Since the
alleles assigned to each founder were unique, homozygosity at a locus could only
occur when the alleles were identical by descent. Under the full genetic model,
correlated values for additive (a;) and homozygous dominance (d;;) effects were
sampled for each allele from

0 Va D,
a; 2nloc  nloc
<d“-> N id D, D (12)
nloc  nloc  nloc
where nloc = 30 is the number of loci, and ¢{d = —0.5 is the inbreeding

depression. For these simulations, V4 = 0.2 and D3 = 0.5. Each non-identical
combination of alleles within a locus was given a random dominance effect
(di; for alleles ¢ and j) drawn from a normal distribution with mean zero and
variance V. = 0.2. Transmission of alleles at each locus from one generation
to the next was simulated by Mendelian segregation and free recombination
into gametes. Phenotypes were calculated as the sum of the genetic values
from a combined pair of gametes (the genotypic value) to which was added an
independent environmental effect with mean zero and variance Vg = 0.3.
Beginning in the second generation, individuals (and consequently the lines
derived from them) were culled based on a linear function of phenotypic
value. Four such selection schemes were simulated. In the first scheme (I),
no selection was imposed. In the second scheme (II), the lowest trait value
in a given generation was culled with probability 0.15, the highest trait value
with probability 0.125, and the intermediate trait values with probability based
on a linear combination of these two. Schemes III and IV were similar with,
respectively, 0.2 and 0.25 probability of culling of the lowest trait value for each
generation, and zero probability of culling for the highest trait value.
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Figure 1. Pedigree for one of three independent sets of lines for the Scottish
Blackface breed. This is the pedigree used for analysis of Ns/Np data which omits
line cross lambs. Rams are represented as squares and ewes are represented as circles.
When more than two progeny appear from the same mating, the progeny were
produced in different years. Matings which produced no measurable progeny are not
shown. Only two of the possible eight inbred lines reached the maximum level of
inbreeding.
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3. RESULTS
3.1. Simulations

The results of the simulation study are presented in table I. The inbreeding
depression estimate is biased upwards as selection becomes more intense
and more lines with lower mean phenotypic values are lost. The variance
components appear to be little affected except in that the standard deviations
on the mean estimates grow with data sets reflecting higher levels of selection.
These data sets are not only smaller but they lack information on animals at
high levels of inbreeding.

Table I. Effect of selection on variance component and inbreeding depression
estimates observed in simulation study.

Selection Mean number Va Vi Dy D; H* Inbreeding
scheme®  of records™* depression
Initial 50.00 0.2 0.2 —-0.1 0.5 0.008 —0.5

I 50.00 0.198 0.186 —0.091 0.493 -0.078 —-0.501
SE (0.002) (0.005) (0.005) (0.022) (0.031)  (0.005)
11 38.49 0.190 0.208 —0.086 0.474 —0.045 —0.470
SE (0.002) (0.006) (0.006) (0.024) (0.033)  (0.007)
111 37.08 0.198 0.202 —-0.096 0.506 —0.030 —0.433
SE (0.002) (0.006) (0.006) (0.030) (0.036)  (0.008)
v 34.52 0.197 0.209 -0.096 0.455 0.076 -0.411
SE (0.002) (0.007) (0.007) (0.030) (0.041)  (0.009)

Estimates of genetic parameters for four selection regimes of increasing intensity. Data
were generated on ten fourth-generation pedigrees of size 50 similar to those found
in the experiment and pictured in figure 1. Results are for 500 replicate data sets.
* Details are given in the Methods section; ** the number of records observed declines
with increasing selection. SE: standard error.

3.2. Fixed effects for N,/N,

In earlier analyses, when all observations were included in a single data set,
the fixed effects found to be affecting this trait were dam and lamb inbreeding
depression [29] and year of birth. The same fixed effects were fitted in this
analysis. The estimates for inbreeding tend in the expected directions (decline
in value with additional inbreeding of the dam and the lamb). The estimate for
inbreeding depression of the lamb (table II) for each of the six groups was rarely
more than a single standard deviation from zero, probably due to the small
sample sizes of the single group data sets (purebreds had 145 to 189 observations
per group; crossbreds had 300 to 361 per group) and to the lack of high levels of
inbreeding either among the observed lambs or among their mothers. However,
the consistent negative value supports the previous analysis and, pooled over
groups, the decline is —0.52 £ 0.20. The effect of the inbreeding of the dam
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(results not shown) was less pronounced. Pooled over groups, dam inbreeding of
25 % resulted in a trait mean decline from 3.88 4 0.06 to 3.74 & 0.10. Estimates
of inbreeding depression from purebred groups were larger in magnitude than
for crossbred groups but the effect was not significant (difference 0.57 & 0.42).
While effects of the year of birth (estimates not shown) were significant, there
was no evidence of a consistent long-term trend. In combined group analyses,
separate levels of fixed effects (including inbreeding depression) were estimated
for each group.

Table II. Ng/N, separate group results.

Breed Va Ve Viar LD. Mean 5

Bf 0.16* (0.11) 0.09 (0.09) 0.24 (0.18) —1.46 (0.64) 3.33 (0.24) —14.4
Ch  0.20* (0.15) 0.24 (0.15) 0.16 (0.28) —0.32 (0.76) 4.16 (0.21) —34.5
We 0.0 0.23 (0.07) 0.16* (0.10) —0.80 (0.48) 361 (0.23) —9.3
Bf-Ch 0.15% (0.09) 0.14 (0.08) 0.35* (0.16) —0.17 (0.45) 3 (0.17) —67.8
BfWe 0.28"* (0.09) 0.14 (0.06) 0.12 (0.12) —0.53 (0.40) 395 (0.15) —38.9
Ch-We 0.10  (0.07) 0.12 (0.07) 0.31* (0.14) —0.23 (0.45) 4.16 (0.19) —31.1

Variance components, inbreeding depression (1.D.), trait means and log likelihood
(1) for separate group analyses. Standard errors follow estimates except where the
component has been constrained to zero to satisfy feasibility. Breed groups are
abbreviated as follows: Bf: Scottish Blackface; Ch: South Country Cheviot; We: Welsh
Mountain. Results of likelihood ratio tests for significance are indicated by asterisks:
* P <0.05 " P <0.01.

3.3. Variance components for N,/N,

Variance components results in table IT are from a reduced model including
only Vyu, V. and V.. In most cases it was not possible to estimate variances
due to homozygous dominance, i.e. Dy, D; and H*. These were difficult to
estimate because large negative sampling correlations between D3 and both
Va and V. [5] resulted in infeasible estimates at best, and instability of the
Fisher scoring maximization algorithm at worst.

3.3.1. Additive variance

Additive variance was detected (P < 0.05) in all of the groups except for
Welsh and Cheviot-Welsh (table II). Heritability estimates ranged from 0 to
0.51.

There was no evidence from the likelihood tests for differences in the additive
component within the purebred and crossbred groups nor between purebred
(h? = 0.31) and crossbred (k% = 0.35) combined data sets (table III).

3.3.2. Dominance variance

In Welsh, Blackface-Cheviot and Cheviot-Welsh breeds, there was evi-
dence of random dominance variance (P < 0.05) (table II). In the pooled data
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(table III), there was evidence of random dominance in the crossbred groups
but not in the purebred groups, although the difference in magnitude between
them was not significant. Homozygous dominance variance components either
could not be estimated, or did not differ significantly from zero for these data
sets.

Table III. Ns/Np combined group results.

Va Ve Viar Dy Dj 1

Combined purebred groups
0.15* (0.06) 0.20 (0.06) 0.3 (0.11) 0.0 0.0 (0.0) —63.58
Combined crossbred groups
0.20"* (0.05) 0.14 (0.04) 0.23**(0.08) —142.1
0.17  (0.07) 0.11 (0.07) 0.28 (0.12) 0.0 0.10 (0.19) —142.0

Variance components and log likelihood (1) for combined group analyses. In the
case of the crossbred groups, results are included for analyses with and without the
components D and D3. Standard errors follow estimates in parentheses except where
the component has been constrained to zero to satisfy feasibility. Results of likelihood
ratio tests for significance are indicated by asterisks: * P < 0.05, ** P < 0.01.

When the two forms of dominance variance V. and D} were combined in
the pooled dominance model, the resulting dominance component was again
significant for the crossbreds but not for the purebreds. The pooled dominance
model resulted in a higher likelihood in the purebreds over the model with
D3 = Dy = 0, but no change in likelihood in the crossbreds. Since these models
are not nested, a test was not possible.

3.4. Fixed effects for weight

The fixed effects significantly affecting the weight measurement data were,
for dams, inbreeding coefficient, age and parity, and for lambs, year of birth,
inbreeding coefficient and birth/rearing type (born single/reared single, born
as twin/reared as twin, etc.). The influences of the dam’s attributes and the
birth/rearing type were much less in the 78-week weight than in the 24-week
weight.

Inbreeding depression for the lamb (table I'V) was observed within all breed
types and was much greater for the 78-week weight than for the 24-week weight.
As in the Ng/N,, trait, inbreeding depression for weight in the crossbred groups
tended to be lower in magnitude than expected if the inbreeding depressions
of the constituent purebred groups were averaged; but again this was not
significant. The trait mean for each crossbred was very close to the average
of the means of the constituent purebred groups for both 24-week weight and
78-week weight.
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3.5. Variance components for weight
3.5.1. Additive variance

A substantial amount of additive variation was evident in all groups at both
ages (table IV). Heritabilities ranged from 0.20 to 0.46 for 24-week weight and
from 0.12 to 0.69 for 78-week weight.

Table I'V. Weight results from separate group analyses.

Breed Va Ve Var Vin 1D.

Purebred groups
24-week weights

Bf 115 (4.4)* 94 (35) 04 (5.0) 3.6 (L9* —13.8 (2.1)

Ch 74 (5.1)** 157 (6.3) 0.5 (9.5) 0.0 —14.4 (4.0)

We 3.7 (1L.5)** 3.4 (0.9) 0.0 3.4 (0.9 -10.5 (1.3)
78-week weights

Bf 30.1 (8.3)** 8.3 (5.2) 8.9 (7.7) 0.0 —25.1 (2.4)

Ch 6.2 (8.8)* 14.4 (11.0) 29.3 (202) 0.0 (5.4) —29.9 (5.5)

We 14.1 (3.6)** 5.84 (1.9) 0.0 1.7 (1.3) —17.4 (1.7)

Crossbred groups

24-week weights

BECh 5.6 (24) 52 (22) 87 (37)* 7.2 (1.6)* —10.5 (15)
BEWe 7.9 (21)** 60 (1.8) 15 (26) 3.7 (1.2)* —12.5 (1.3)
Ch-We 6.6 (2.2)** 40 (19) 48 (28)* 18 (1.1) —11.9 (14)

78-week weights
Bf-Ch 23.9 (5.3)** 10.5 (3.5) 58 (4.7) 2.8 (2.0 -254 (1.7)
Bf-We 20.4 (4.5)** 7.7 (3.1) 4.4 (4.6) 4.5 (2.0)* =217 (1.7)
Ch-We 21.8 (4.4)* 99 (2.1) 0.0 0.0 -21.7 (1.7)

Variance components and inbreeding depression (I.D.) for separate group analyses
of 24-week and 78-week live weight. Standard errors follow estimates except where
the component has been constrained to zero to satisfy feasibility. Breed groups are
abbreviated as follows: Bf: Scottish Blackface; Ch: South Country Cheviot; We: Welsh
Mountain. Results of likelihood ratio tests for significance are indicated by asterisks:
* P <005 " P <0.01.

3.5.2. Dominance and maternal variance

Much of the information in the data used to calculate random dominance
variance comes from full-sib groups and thus we find substantial sampling
correlations between estimates for V. and V,,,. Significant Vg, could not be
detected in any of the purebred groups for 24-week weight though it is present
(P < 0.05) in two of the three crossbred groups. For 78-week weight there was
no evidence of random dominance in any of the separate group data sets (see

(table IV).
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Maternal variance in the separate group analyses (table I'V) was generally
higher for 24-week weight than it was for 78-week weight, confirming the
observation of reduced influence of the dam from the fixed effects. Among
the purebred groups, significant maternal variance was found in all but the
Cheviot group for 24-week weight but could not be detected for 78-week weight.
The crossbred groups, with the exception of the Cheviot-Welsh breed, showed
significant maternal variance for both 24- and 78-week weight.

Sample size and pedigree structure were never adequate to estimate com-
ponents of variance involving homozygous dominance as distinguished from
random dominance within each group. When the pooled dominance model was
fitted, the combined dominance component was present in the Blackface and
Blackface-Cheviot groups for both 24- and 78-week weight (results not shown).
Correlations between homozygous dominance and additive effects (D;) were
negative for both the Blackface and the Blackface-Cheviot breeds but was only
significantly different from zero (P < 0.05) in the Blackface breed.

The results of the analysis of the combined purebreds and combined cross-
breds are complicated since there was evidence of differences in the components,
among the combined groups, that were statistically significant and not strictly
related to the mean weight. Therefore, the constraint that the three groups in
each combined data set share a single set of variance components may have
introduced bias into the combined results and table V must be viewed in this
context. The only significant homozygous dominance variance in these com-
bined analyses was in the combined purebred data set. The magnitude of this
variance was not significantly different between 24 and 78 weeks although the
higher additive variance at 78 weeks implies a smaller negative correlation be-
tween additive and homozygous dominance effects at the later age (—0.91 at
24 weeks, —0.80 at 78 weeks).

The combined crossbred line data sets showed very little evidence of ho-
mozygous dominance variance. In the case of the 78-week weights, where the
combining of the constituent crossbred data sets required the least constraint,
the inclusion of homozygous dominance variance components in the model in-
creased the log likelihood by a mere 0.22. Although the estimates for the two
dominance variance components in the combined crossbred data set are very
nearly the same, the constraint that these two were the same (pooled domi-
nance model) results in a slightly poorer fit than that given by the model in
which the homozygous dominance components are constrained to zero. Since
these models are not nested, a test was not possible. This indicates, however,
that our power to detect homozygous dominance variance components is in-
adequate even though random dominance can be quite accurately estimated.
Homozygous dominance variance is also not to be found in the 24-week data
which, nevertheless, show highly significant random dominance variance. The
pooled dominance model again in this case results in a negligible likelihood
difference.

4. DISCUSSION

The structure of the data analyzed, and their size, are unique in livestock and
unusual in mammals, with rapid inbreeding conducted up to and beyond 50 %
in a variety of pure breeds, and crosses of those breeds, followed by crossing



56 F.H. Shaw, J.A. Woolliams

Table V. Combined line weight results.

Va Ve Vi Vim Dy D} Iy

Purebred groups
24-week weights

7.9 (1.8)** 7.3 (1.1) 0.0 2.7 (0.9)** —-1278.7
16.7 (3.2)** 8.1 (1.8) 0.0 2.5 (0.8)** —14.6(4.6)"* 30.3 (12.5) —1272.8
78-week weights
17.2 (3.6)** 10.9(2.8) 3.8 (4.2) 1.1 (1.3) —1456.4

29.9 (6.0)** 12.0(3.2) 0.0 1.2 (1.3) —16.3 (7.9)* 27.5 (20.2) —1453.9

Crossbred groups
24-week weights
6.1 (1.3)** 5.6 (1.1) 5.8 (1.9)** 3.7 (0.7)"* —2789.0
6.8 (2.)** 6.9 (1.2) 4.4 (2.0)** 3.9 (0.7)** 0.34 (2.3) —6.5(5.9) —2788.0
78-week weights

19.4 (2.6)** 9.1 (L.7) 5.0 (2.6)* 2.5 (0.9)** —3108.7
20.2 (3.8 8.5 (2.1) 5.2 (3.1)* 2.2 (0.9 —1.9 (4.3) 6.6 (10.9) —3108.5

Variance components and log likelihood (I1) for combined group analyses of 24-week
and 78-week live weight. Two models are shown for each data set, one with and one
without the homozygous dominance variance components D1 and D3. Standard errors
follow estimates in parentheses except where the component has been constrained to
zero to satisfy feasibility. Results of likelihood ratio tests for significance are indicated
by asterisks: ¥ P < 0.05, ** P < 0.01.

of the inbred lines within a breed type. Despite this structure the estimation
of the variance components pertaining to homozygous dominance effects was
found to be difficult. For the ratio of secondary to primary follicle numbers,
random dominance variance was estimated to be of a similar magnitude to
additive and to environmental variance, depression to complete inbreeding
was of the order of 1 environmental standard deviation, but parameters
pertaining to inbred dominance effects were negligible. For live weight, random
dominance variance was usually smaller in magnitude than additive variance
and depression to complete inbreeding was five or six times the environmental
standard deviation, with estimates of inbred dominance variance components
rarely obtainable and even more rarely significant. At all times H*, the sum of
the squared homozygous deviations, was small or was estimated to be negative
and consequently constrained to zero. The interpretation of such results is
difficult.

For live weight, it is easiest to postulate many loci, each having alleles of
small effect: thus, the total sum of the homozygous dominance effects may be
substantial (hence, a large inbreeding depression) but H* is small. If a biallelic
model is considered at each locus, then a model of rare recessives of large effect
could be considered to fit the pattern observed. The inbreeding depression per
locus would be approximately p.d,, (where r denotes the recessive allele) for
each locus and could be of significant magnitude when summed over loci if each
term were O(1/N) where N is the number of loci. H* would be approximately
(prd-+)? and consequently very much smaller when N is large. D} would be
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approximately 4p,(d,)?, which is not necessarily small. For the follicle ratio
this explanation of many loci with rare recessives is less satisfactory since the
inbreeding depression is weak while Vy,. is large.

This tentative conclusion for live weight appears to agree with those of
Caballero and Keightley [1] for the quantitative trait of bristle number in
Drosophila melanogaster. From an analysis of the distributions of P-element
mutagenesis, they concluded that a large proportion of the additive variance
and practically all of the dominance variance arose from recessive or partially
recessive mutants. The relative magnitude of the partition between the additive
and dominance variance found in their study was 8 to 1, which has some
similarity to the relative magnitude observed here. Davis et al. [6] observed
that a few genes of large effect may explain some 75 % of the additive genetic
variation for birth weight in a crossbred population. Such genes are predicted to
be at least partially recessive in the distributions of Caballero and Keightley [1].
There was no indication in the analysis by Davis et al. [6] of whether dominance
was found with these loci, although the experimental design should give some
information on this.

Another complication requiring consideration is the sensitivity of dominance
components to epistasis. Epistasis has been observed for loci of large effect on
bristle number [13] and the presence of epistasis in previous analyses of this
data set were significant for live weight [25] but not for N,/N, [30]. Such
a sensitivity to at least some form of epistasis (which is a very general term
covering all interactions among loci) might be expected. The possibility of errors
in estimation can be discounted since all the estimates from the simulation
study were consistent with the true parameters in the absence of selection.

Recent treatments in the animal breeding literature of the problem of dom-
inance variance with inbreeding have proposed that the quadratic components
of variance which involve homozygous dominance variance might safely be ig-
nored when genetic evaluation is the goal of the analysis [7, 21]. The current
analysis adds credence to this contention. Not only are the homozygous domi-
nance components very difficult to calculate, but they appear to be absent or
indistinguishable from random dominance in the largest and most thorough
analyses yet completed despite the presence of substantial random dominance
and inbreeding depression. However, the development of finite locus models
[17] would prevent the need for this choice between incompleteness and the
complexity of the components.
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