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Abstract – Rates of inbreeding (∆F) in selected populations were predicted using the
framework of long-term genetic contributions and validated against stochastic simulations.
Deterministic predictions decomposed ∆F into four components due to: finite population size,
directional selection, covariance of genetic contribution of mates, and deviation of variance
of family size from that expected from a Poisson distribution. Factorial (FM) and hierarchi-
cal (HM) mating systems were compared under mass and sib-index selection. Prediction errors
were in most cases for ∆F less than 10% and for rate of gain less than 5%. ∆F was higher with
index than mass selection. ∆F was lower with FM than HM in all cases except random selec-
tion. FM reduced the variance of the average breeding value of the mates of an individual. This
reduced the impact of the covariance of contributions of mates on ∆F. Thus, contributions of
mates were less correlated with FM than HM, causing smaller deviations of converged contribu-
tions from the optimum contributions. With index selection, FM also caused a smaller variance
of number of offspring selected from each parent. This reduced variance of family size reduced
∆F further. FM increases the flexibility in breeding schemes for achieving the optimum genetic
contributions.

mating system / inbreeding / selection / prediction / genetic contribution

1. INTRODUCTION

Simulated dairy cattle breeding schemes based on selection at an early age,
combining family information with technologies affecting the reproductive
capacity of females, resulted in extremely high rates of inbreeding [12, 14].
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This occurred because all male offspring from the best family were selected
together. Therefore, some restrictions on selection were imposed so that e.g.
only one male could be selected from each full-sib family [11]. This, however,
decreased the selection intensity, because males with lower predicted breed-
ing values were selected. Woolliams [15] proposed the application of a mating
strategy, factorial mating, that gives a different population structure compared
to hierarchical mating by reducing the size of full-sib families while increas-
ing the number of half sibs. Factorial mating is a random mating system, where
parents of both sexes are mated to more than one of the opposite sex. This is in
contrast to hierarchical mating schemes, where females are only mated to one
male, but one male can be mated to several females. Factorial mating, there-
fore, results in a smaller risk of selecting many animals from the same full-sib
family. Consequently, factorial mating is expected to decrease the variance of
family sizes after selection and, thus, to result in a smaller rate of inbreed-
ing. When selection is directional, factorial mating has been shown to increase
the rate of gain with a small reduction in the rate of inbreeding relative to
hierarchical mating [12, 14]. However, stochastic simulations do not uncover
the mechanisms by which factorial mating reduces inbreeding. An alternative
approach is to model the selection and mating process deterministically, by
setting up a series of prediction equations, revealing how mating structures
influence the rate of inbreeding. Such a framework for predicting both rates
of gain and rates of inbreeding under selection has been developed by Wool-
liams and co-workers using long-term genetic contributions [16, 18]. So far,
this framework has not been applied to mating systems other than hierarchical
mating.

This study shows that it is possible, by deterministically predicting the rate
of inbreeding, to quantify in what way, and why, factorial mating reduces
the rate of inbreeding relative to hierarchical mating in populations under
selection. In order to predict the rate of inbreeding, the concept of long-term
genetic contributions was used and the framework was extended and validated
to account for factorial mating.

2. MATERIALS AND METHODS

The basic assumptions underlying this study were those of a breeding pro-
gram in equilibrium, i.e. a population with a stable genetic variance, and with a
trait that can be modelled by the infinitesimal model [8]. Stable genetic param-
eters were obtained by iterating on the recurrence relationships of Bulmer [5],
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while any effect of inbreeding on the genetic variance was ignored in order to
avoid interactions between the rate of gain and the rate of inbreeding.

Two mating designs were explored in this study. Hierarchical mating, where
dams are nested within sires, i.e. a dam is mated to a single sire and so has
a mating ratio, df = 1, whereas sires can be mated to more than one dam,
dm ≥ 1. Under factorial mating, on the other hand, both sires and dams are
mated to more than one of the opposite sex, i.e. a cross-classified design, where
both dm and df are > 1. When these two mating schemes are compared with
the same number of offspring per sire and per dam, they result in different
family structures. Hierarchical mating results in large full-sib families and a
group of paternal half-sibs. Factorial mating results in small full-sib families,
more paternal half-sibs, and also a group of maternal half-sibs. In this study,
both mating systems were implemented using random mating, in the sense that
there is no expected covariance between any characters of mates.

Selection was based on an index that weighs information of the candidates
own performance with the performance of full-sibs, paternal half-sibs, and
maternal half-sibs [7]. The index for the kth offspring of the ith sire and jth
dam is:

Ii jk=c1(Pi jk−P̄i j) + c2(P̄i j−P̄i• − P̄• j + P̄••) + c3(P̄i• − P̄••) + c4(P̄• j − P̄••)

where Pi jk is the performance of the individual itself, P̄i j is the average per-
formance of the full-sib family, P̄i• is the average performance of the paternal
half-sib family of sire i, P̄• j is the average performance of the maternal half-sib
family of dam j, and P̄•• is the population mean. The first information source
is independent of the others, but the remaining sources are mutually dependent
unless df = 1. In this case, which is hierarchical mating, P̄• j = P̄i j, and the
index reduces to a form comparable to the sib-index of Wray and Hill [20] and
Wray et al. [22].

2.1. Setting up the model

The rates of gain and inbreeding were predicted by modelling the selec-
tion and mating process. Thus, the mechanisms generating gain and inbreeding
were revealed in this model. The basis of the model is the concept of long-term
genetic contributions first introduced by James and McBride [9].

2.1.1. Expected long-term genetic contributions

The long-term genetic contribution of an ancestor in a remote generation
is the proportion of genes in the present generation, which have been derived



60 A.C. Sørensen et al.

directly from the ancestor [18]. Wray and Thompson [21] derived a relation-
ship between the realised genetic contribution and the rate of inbreeding, and
Woolliams and Thompson [17] derived an analogous expression for the rela-
tionship between the realised genetic contribution and the rate of gain.

Long-term genetic contributions can be predicted conditional on selective
advantages of individuals, i.e. factors influencing the success of an animal
measured as the number of offspring selected [18]. Thus, predicted genetic
contributions model the expected transmission of selective advantages from
parent to offspring.

The selective advantages considered in this study were (1) the breeding
value of the individual itself, and (2) the average breeding value of the mates
of the individual. The second selective advantage takes account of the fact that
the probability of having offspring selected depends on the breeding value of
the other parent. The expected long-term genetic contribution, ri(q), of individ-
ual i of sex q were calculated conditional on these selective advantages using
a linear model:

E[ri(q) | i is selected] = µi(q) = αq + βq,1(si(q),1 − s̄q,1) + βq,2(si(q),2 − s̄q,2) (1)

where (si(q),1 − s̄q,1) is the true breeding value of the individual itself as a de-
viance from the mean breeding value of parents of sex q, and (si(q),2 − s̄q,2) is
the average true breeding value of the mates of the individual as a deviance
from the mean.

The model requires intercept and regression parameters (αq, βq,1, βq,2) to be
predicted. The intercept terms are specific for each sex and are easily predicted
for non-overlapping generations, as they only depend on the number of parents
of each sex, Nq, and are independent of the selection process. Thus:

αq =
1

2Nq
·

A general solution for predicting the regression terms was presented by
Woolliams et al. [18]. The regressions (βq,1, βq,2) were predicted using two
linear models to describe the inheritance of the selective advantages. First, the
number of selected offspring as a function of the parent’s selective advantages.
And second, the selective advantages of selected offspring as a function of the
parent’s selective advantages. The details of the predictions are presented in
Appendix A.
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2.1.2. Predicted rates of genetic gain

The expected rates of genetic progress were calculated from the expected
long-term genetic contributions, µi(q), following Woolliams et al. [18]:

E[∆Geq] =
∑

q=m, f

Nq · E[µi(q) · ai(q) | i is selected]
(2)

=
∑

q=m, f

Nq ·

αqE[ai(q) | i is selected]

+βq,1cov(si(q),1 − s̄q,1; ai(q))



where ai(q) is the Mendelian sampling term of ancestor i of sex q, and Nq is
the number of ancestors of sex q. The term in βq,2 has disappeared, because
the covariance between the Mendelian sampling term of an individual and the
breeding values of the mates is zero under random mating. The expectations
and covariances in (2) are given in Appendix B for the scenarios considered in
this study.

2.1.3. Predicted rates of inbreeding

The rate of inbreeding is also a function of the long-term contributions of
ancestors, ri, [16, 21]:

∆F ≈ 1
4

E


∑

i

r2
i

 ·

This is a simplified version assuming random mating. In a prediction problem,
the contributions are not observed, so they are replaced with expectations:

E[∆F] ≈ 1
4

∑

i

E[r2
i ] =

1
4

∑

i

[E[ri]
2 + Var[ri | selective advantages]] · (3)

If family sizes follow a Poisson distribution, family size meaning the number
of selected offspring of a specific parent, then the variance is determined by
the mean. Any deviation from the expected variance is modelled in a term,
δ, which is composed of two parts: the deviation of family size from Poisson
and the deviation of genetic contributions from the linear regression in (1).
Then (3) becomes:

E[∆F] ≈ 1
2

∑

i

[
µ2

i +
1
4
δi

]
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and using (1) gives with some modifications:

E[∆Feq]

=
(
1 + 2E

[
∆Feq

])

1
2

∑

q=m, f

Nq · E
[
µ2

i(q) | i is selected
]
+

1
8

∑

q=m, f

Nqδq



=
(
1 + 2E

[
∆Feq

])
(4)



1
2

∑

q=m, f

Nqα
2
q +

1
2

∑

q=m, f

Nqβ
2
q,1Var(si(q),1 − s̄q,1)

+
1
2

∑

q=m, f

Nqβ
2
q,2Var(si(q),2 − s̄q,2) +

1
8

∑

q=m, f

Nqδq


.

The first term is a second-order correction, because the expression inside the
square brackets is expected to under-predict the rate of inbreeding by a frac-
tion of two ∆F [16]. The correction arises from the derivation of the relation-
ship between the rate of inbreeding and the long-term contribution. The first
three terms inside the square brackets of (4) were derived assuming that size
of families after selection follow a Poisson distribution [16]. The variances of
the selective advantages are given in Appendix B.

The fourth term inside the square brackets in (4) includes δq, which is the
correction (hereafter called Poisson correction) due to deviations of the vari-
ance of family size from the variance expected under a Poisson distribution and
deviations from the linear model (1). In this paper, family sizes are equal prior
to selection, and follow a hypergeometrical distribution after selection [4]. For
mass selection the hypergeometrical distribution was approximated by a bino-
mial distribution [4].

The family structure of a population under factorial mating is different from
under hierarchical mating. Under mass selection the difference has limited im-
pact on the rate of inbreeding, and the binomial approximation for the Poisson
correction can be adopted with very limited loss of precision [4]. Under in-
dex selection, correlations between indices of sibs can be very high, which in-
creases the probability of co-selection of sibs. This has a significant impact on
the rate of inbreeding, and is partly accounted for by the linear expression (1).
However, the linear model is an approximation to a non-linear relationship be-
tween contributions and selective advantages [16]. The Poisson correction also
accounts for the effect of this non-linearity on the rate of inbreeding, because
the variance deviations are calculated as the part of the total variance not ac-
counted for by the linear model (1). The Poisson correction was calculated
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using the approach by Woolliams and Bijma [16]. The detailed procedure for
calculation of the corrections is given in Appendix C.

The four terms inside the square brackets of (4) are isolated terms each
contributing to the rate of inbreeding and can be interpreted as follows.

I. The first term, containing the α’s, gives the rate of inbreeding had ran-
dom selection been applied. This is the rate of inbreeding due to finite
population size alone.

II. The second term, containing the regression on the first selective advan-
tage, gives the contribution to the rate of inbreeding that arises due to
the selection that generates genetic gain. This is called inbreeding due to
directional selection.

III. The third term, containing the regression on the second selective advan-
tage, gives the contribution to the rate of inbreeding that is due to the tying
together of genetic contributions of the male and female of a mating pair
without generating genetic gain. This is called inbreeding due to covari-
ance between long-term genetic contributions of mates.

IV. The fourth term, the Poisson correction as explained earlier, is the cor-
rection for deviations from a Poisson distribution of the family sizes after
selection and for deviations from linearity: the higher variances of fam-
ily sizes and the larger deviations from linearity in the contributions, the
larger correction.

The presented model was used to analyse differences between the two
mating systems in the four terms contributing to the rate of inbreeding
in equation (4).

2.2. Validating the model

The results from the deterministic model were compared to stochastic sim-
ulations in order to validate the predictions of rates of gain and inbreeding,
as well as some of the different components in the predictions. The simula-
tion program developed by Bijma et al. [4] was further developed to account
for factorial mating. The breeding schemes were allowed five generations for
achieving equilibrium in the parameters, and generation five was therefore
used as the base population. An additional seven generations were simulated to
allow contributions from ancestors in generation five to converge [2]. The rates
of gain and inbreeding were measured as averages from generation 6 to 12.
The simulation program allowed calculations of empirical equilibrium genetic
parameters, regression coefficients for the linear model and Poisson correc-
tions for comparison to those predicted. This allowed a validation of single
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components of the prediction equation (4). E.g. the effect of imprecise pre-
dicted regression parameters on the precision of the predicted rate of inbreed-
ing could be tested by using the predicted regression parameters in (4) and use
simulated values for the rest of the terms.

Two different terms were calculated from the simulations in order to vali-
date the predicted Poisson correction and assess the effect of non-linearity of
the contributions relative to the selective advantages on the rate of inbreed-
ing. The first term, PCv, is a correction for deviation from Poisson variances
alone. The second term, PCvl, is a correction for both deviation from Poisson
variances and deviation from linearity. This second term is a simulated term
corresponding to the predicted Poisson correction.

A number of scenarios were used to validate the predictions. Four differ-
ent population structures and sizes were explored with all combinations of
20 and 40 sires, and twice and four times as many dams as sires. In all pop-
ulations, selection of parents was based on the index described above. The
weights in the index were either (1) set equal to each other, which resulted
in mass selection, or (2) calculated, conditional on the equilibrium parame-
ters, using standard selection index theory in order to maximise the correlation
between the true breeding value and the index, i.e. so-called optimum weights.
The traits investigated ranged in heritabilities from 0.01 to 0.99. Hierarchical
mating (dm = 2 or 4, df = 1) and factorial mating with a female mating ratio of
four (dm = 8 or 16, df = 4) were applied. Under hierarchical mating litter size
was eight, i.e. four of each sex, and under factorial mating litter size was two,
i.e. one of each sex. Consequently, the number of selection candidates and,
therefore selected proportions, were the same under the two mating schemes.

3. RESULTS

3.1. Mechanisms generating inbreeding

The results presented in this section were derived from the deterministic
model described under Materials and Methods. Therefore, no standard errors
are attached to the presentation of the results and differences.

3.1.1. Effect of heritability and selection criterion

The rate of inbreeding depended on the heritability of the trait under selec-
tion, the selection criteria used, and the mating scheme in a complex manner
for a given size of breeding scheme (Fig. 1). With classical selection indices,
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Figure 1. Predicted (lines) and simulated (symbols) rates of inbreeding (∆F) in a
scheme with 40 sires and 80 dams selected on phenotype (circles) or on sib-index
(squares) and mated hierarchically (filled symbols) or factorially (open symbols) for a
range of initial heritabilities (h2).

the rate of inbreeding was highest for low heritabilities and declined as heri-
tability tends to 1, but for mass selection the rate of inbreeding was highest for
intermediate heritabilities. The classical index selection produced greater rates
of inbreeding than mass selection (compared using the same mating system)
except when heritability is 1, when the two selection criteria are equivalent.

3.1.2. Difference between mating systems

There was no difference between the rates of inbreeding in the two mating
schemes under random selection, which was approximated by mass selection
for a trait with a heritability of 0.01, as shown by both the simulated and pre-
dicted values in Figure 1. The predictions captured this property of factorial
mating, because the variances of the selective advantages are zero under ran-
dom selection. The finding that hierarchical and factorial mating resulted in
the same rate of inbreeding under random selection is in accordance with the
results of Woolliams [15]. This suggests that the looser tying together of con-
tribution of mates under factorial mating is important, only when selection acts
upon the contributions in attempting to increase the contribution of the better
than average ancestors while decreasing contributions of other ancestors.

For low heritabilities (≤0.2), factorial mating was very advantageous under
index selection. The reasons for the differences between factorial and hierar-
chical mating were revealed by deterministic predictions of rates of inbreed-
ing. Several factors contributed to a reduced rate of inbreeding with factorial
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mating under index selection. These were highlighted by the decomposition of
equation (4) described previously.

The contributions to the rate of inbreeding from directional selection,
covariance between mates, and the Poisson correction were smaller under fac-
torial mating than under hierarchical mating (Fig. 2). The term due to direc-
tional selection was reduced between 0 and 30%, with larger reductions for
lower heritabilities, due to a lower accuracy of the selection criteria under fac-
torial mating (the impact on genetic gain will be addressed in Sect. 3.2.2). The
term due to covariance between mates was reduced due to contributions from
females being less correlated to contributions from males under factorial mat-
ing. The Poisson correction was smaller under factorial mating due to a smaller
variance of family sizes and smaller deviations from linearity in the relation-
ship between contributions and selective advantages. Together, these factors
contributed to a considerably lower rate of inbreeding with factorial mating
relative to hierarchical mating, when selection was based on a sib-index.

3.1.3. Non-linearity explained by the Poisson correction

The impact of the deviations from linearity on the rate of inbreeding was
assessed by comparing PCv and PCvl relative to the rate of inbreeding (Fig. 3).
For cases with intermediate heritabilities under index selection disregarding
the non-linearity would result in an under-rating of the rate of inbreeding by
up 20%. The degree of non-linearity was larger for hierarchical than for facto-
rial mating. The amount of non-linearity in the relationship between contribu-
tions and selective advantages depended also on the heritability. For a heritabil-
ity of 0.01 there was hardly any non-linearity, but the amount of non-linearity
increased with increasing heritability up to moderate heritabilities. For the
extreme heritability of 0.99 the amount of non-linearity was again smaller.

3.1.4. Mass selection

The predictions revealed that, under mass selection, the only differences
between the mating schemes was that the variance of the second selective
advantage was reduced under factorial mating for both males and females.
With a female mating ratio of four, the variance was reduced by 77 to 79%
compared to hierarchical mating (results not shown) giving a smaller contri-
bution from the covariance of mates. The reductions were larger than 75%,
because the predictions take account of the populations being finite. This
caused a reduction in the rate of inbreeding by up to 15% (Fig. 1).
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Figure 2. Contribution to the rate of inbreeding (∆F) from (a) directional selection,
(b) covariance between mates, and (c) the Poisson correction for hierarchical (full
line) and factorial (dotted line) mating in an index selection scheme with 20 sires and
40 dams for a range of initial heritabilities (h2).
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Figure 3. Deviations from linearity measured as differences (%) between simu-
lated rates of inbreeding and rates of inbreeding calculated using simulated param-
eters with a Poisson correction not accounting for non-linearity for a range of initial
heritabilities (h2). A negative difference means that the calculated rate of inbreeding
is smaller than the simulated. Results are for schemes with index selection using hier-
archical (dots) or factorial (circles) mating.

3.2. Validating the model

3.2.1. Rates of inbreeding

The predictions of the rate of inbreeding were compared to results from
stochastic simulations (see Fig. 1 for a specific size of breeding program). The
predictions captured both the trend and the level of the rate of inbreeding over
the range of heritabilities, selection criteria, and mating schemes. Under index
selection, the relative prediction errors (Fig. 4a and Tab. I) were rarely larger
than 10% except in the extreme cases, where the initial heritability was 0.01.

Less than a third of the total prediction error for low to moderate heritabili-
ties (≤0.5) was due to errors in predicting the regression parameters (Fig. 4b).
The rest of the error was due to errors in predicting the Poisson correction
(Fig. 4c). The importance of these sources changed with heritability: the over-
prediction of the rate of inbreeding for initial heritabilities of less than 0.2 was
primarily due to errors in predicting the Poisson correction, whereas the under-
prediction of the rate of inbreeding for an initial heritability of 0.99 was due to
errors in predicting the regression parameters.

The relatively large errors (up to 20%) in the regression parameters (Fig. 5)
were translated into only small errors in the predicted rates of inbreeding
(Fig. 4b). The prediction errors for the regressions on the first (Fig. 5a) and
the second (Fig. 5b) selective advantages were of the same order and showed
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Figure 4. Deviations (%) of calculated from simulated values of rate of inbreeding
for populations under index selection with hierarchical (dots) and factorial (circles)
mating for a range of initial heritabilities (h2). Rate of inbreeding calculated with
(a) all predicted values, (b) predicted regression parameters and simulated values for
the rest of the terms, and (c) predicted Poisson correction and simulated values for the
rest of the terms.
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Table I. Predicted (p) and simulated (s) rates of gain in phenotypic standard deviations (∆G) and inbreeding (∆F) and prediction error
in percentage of the simulated rates for a number of scenarios where selection is on a sib index. Nm(Nf ) is the number of male (female)
parents. h2

0 is the initial heritability.

Hierarchical mating Factorial mating

Nm Nf h2
0 ∆Gp ∆Gs error (%) ∆Fp ∆Fs error (%) ∆Gp ∆Gs error (%) ∆Fp ∆Fs error (%)

0.01 0.024 0.022 9 0.0351 0.0311 13 0.021 0.020 4 0.0237 0.0213 11

20 40 0.2 0.304 0.298 2 0.0324 0.0288 13 0.292 0.290 1 0.0230 0.0201 14

0.5 0.602 0.599 1 0.0225 0.0212 6 0.596 0.596 0 0.0175 0.0161 9

0.01 0.030 0.026 12 0.0388 0.0315 23 0.027 0.025 7 0.0292 0.0243 20

20 80 0.2 0.342 0.335 2 0.0307 0.0270 14 0.333 0.330 1 0.0241 0.0207 17

0.5 0.669 0.667 0 0.0199 0.0190 5 0.0663 0.665 0 0.0166 0.0153 8

0.01 0.024 0.023 5 0.0171 0.0163 5 0.022 0.021 2 0.0117 0.0110 6

40 80 0.2 0.307 0.304 1 0.0158 0.0155 2 0.296 0.295 0 0.0114 0.0106 7

0.5 0.606 0.607 0 0.0111 0.0112 –1 0.600 0.602 0 0.0086 0.0084 3

0.01 0.030 0.028 6 0.0189 0.0173 10 0.028 0.027 4 0.0143 0.0131 10

40 160 0.2 0.345 0.343 1 0.0151 0.0150 1 0.337 0.337 0 0.0119 0.0113 5

0.5 0.672 0.674 0 0.0098 0.0101 –3 0.667 0.671 0 0.0082 0.0081 1

Standard errors of means of 5000 replicates of simulated rates of gain were less than 0.3% and of rates of inbreeding were less than 0.2%.



Mating systems affect the rate of inbreeding 71

Figure 5. Deviations (%) of predicted from simulated values of (a) regressions on
the first selective advantage and (b) regressions on the second selective advantage
for males (circles) and females (triangles) in populations under index selection with
hierarchical (closed symbols) and factorial (open symbols) mating for a range of initial
heritabilities (h2).

the same trend with over-predicted regressions for low heritabilities and under-
predicted regressions for a very high heritability.

The errors in predicting the Poisson correction might be due to both errors
in predicting the variance of family size as well as errors in capturing the
non-linearity of the relationship between contributions and selective advan-
tages. The over-prediction of the Poisson correction for an initial heritability
of 0.01 was partly due to over-rating the genetic variance and the variance of
the index at equilibrium (results not shown).

Under mass selection, the prediction errors of rates of inbreeding were
smaller, ranging from –8 to 7% (results not shown). The errors largely arose
from errors in the prediction of the regression parameters.
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3.2.2. Rates of gain

For a number of scenarios, the predicted and simulated rates of gain are
given in Table I. The rate of gain appeared to be unaffected by the mating
scheme, when mass selection was practised (results not shown). Under in-
dex selection, the rate of gain was slightly lower for schemes with factorial
mating compared to hierarchical mating due to a lower accuracy of the index
on which selection is based. The prediction errors of the rate of gain were
only larger than 5% in the extreme case when the initial heritability was 0.01
and selection was based on the sib index. The prediction errors arose almost
entirely from errors in the predicted regression parameters, whereas the devi-
ations from linearity in the relationship between the genetic contributions and
the selective advantages had very limited impact on the precision of the pre-
dicted rates of gain (results not shown). Under mass selection the prediction
errors were smaller ranging from –1 to 5% (results not shown).

4. DISCUSSION

This study has shown that predictions of rates of inbreeding using the frame-
work provided by expected long-term genetic contributions can reveal why
factorial mating is superior to hierarchical mating in decreasing the rate of
inbreeding, because the predictions (1) dissected the factors contributing to
the rate of inbreeding and (2) were sufficiently precise.

Factorial mating reduces the rate of inbreeding under mass selection relative
to hierarchical mating, because the variance of the second selective advantage
is reduced. When viewed from a perspective of generating gain, this is a kind
of error term, since it gives rise to inbreeding but not gain. The interpretation of
this is that genes that are not particular good have been linked to better genes
from the mate. Therefore, they “hitchhike” to higher frequencies than their
merit actually warrants, and thereby generate variance of contributions without
generating a positive covariance between the contribution and the Mendelian
sampling term. Factorial mating reduces this error term.

The distribution of genetic contributions determines the rates of gain and
inbreeding. For a given rate of inbreeding, the maximum rate of genetic gain
is achieved by a specific set of contributions. These optimum contributions are
a simple function of the Mendelian sampling terms [19]. However, Mendelian
sampling terms are not known with certainty at the time of selection. As gen-
erations pass, the accuracies of the Mendelian sampling terms of the ances-
tor generation increases, and selection in the descendant generations attempts
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to change the contributions of the ancestors according to the new informa-
tion. The degree to which a mating system allows realised contributions to
move towards the ideal distribution will determine the success of the mating
strategy, because deviations from the optimal will generate inbreeding without
generating genetic gain. Factorial mating reduces these deviations relative to
hierarchical mating. In other words, factorial mating reduces the confounding
between male and female, allowing the optimum contribution of each individ-
ual to be more closely approached.

Optimum contribution selection aims at the optimum distribution of the
genetic contributions in the first generation based on predicted Mendelian sam-
pling terms [1]. As information on the Mendelian sampling term accumulates
over generations, contributions will be changed on the way to convergence.
Factorial mating reduces the covariance of contributions between mates and,
thus, eases the future adjustment of the distribution of contributions and, con-
sequently, is beneficial even with optimum contribution selection [13].

Factorial mating is also advantageous under index selection, because, most
importantly, the Poisson correction is smaller. This is a consequence of the
different structure of the selected population under factorial mating. There are
more, but smaller, full-sib families of selection candidates where both par-
ents have selective advantages above average compared to under hierarchical
mating. This results in both smaller variance of family size and smaller devia-
tions from linearity in the relationship between the genetic contribution and the
selective advantages. This difference occurs because, with hierarchical mating,
a few good ancestors that happened to be mated to other good ancestors con-
tribute very highly to the gene pool. With factorial mating more of the good
ancestors have chances to be mated to other good ancestors, whereby the con-
tributions are more evenly distributed. An additional benefit of factorial mating
is a smaller error variance, i.e. a smaller variance of those contributions that do
not generate gain.

The predictions of the rate of inbreeding were sufficiently precise for most
purposes. However, errors in the predictions occurred for several reasons.
First, the equilibrium parameters were calculated assuming infinite popula-
tion size and uncorrelated indices of selection candidates. This resulted in
an over-prediction of the genetic variance for low to moderate heritabilities,
especially under index selection. Second, the long-term genetic contribution
was modelled using multiple linear regression on the selective advantages.
The condition of linearity was not met by the contributions as they can only
take on non-negative values. The linearity assumption was violated the most,
when the rate of inbreeding is high, i.e. for moderate heritabilities under index
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selection. The deviations from linearity were included within the term intended
to cope with the deviations from Poisson family size. Third, the predictions of
the regression parameters of the linear model (1) were not perfect, because
the two regression models involved in the predictions were approximate [18].
This, however, only contributed to small errors. Fourth, the calculation of devi-
ations of variance from the variance expected under a Poisson distribution was
approximate (App. C). This was the major reason for the over-prediction of
the rate of inbreeding for low heritabilities with index selection. Generally, the
errors were largest, in absolute sense, for unrealistic scenarios, e.g. with heri-
tability of 0.99 and for schemes with inbreeding rates higher than 2% per gen-
eration. Thus, for realistic scenarios, the predictions were reasonably precise.

The results of this study are valid for selection on phenotype or on an index
based on information from full- and half-sibs. The model used is not expected
to be adequate for situations with selection on best linear unbiased predictors
(BLUP), because of increased deviations from a linear relationship between the
genetic contributions and selective advantages [3]. In addition, other selective
advantages, e.g. higher order terms of the breeding value, could be needed [3].
However, the general point of this study, the improved family structure with
factorial mating, is expected to hold even in situations with selection on BLUP.

The results of this study underline that the conscious choice of mating sys-
tem should be an integral part of designing a breeding scheme. The family
structure, the distribution of the genetic contributions, and therefore the rate
of inbreeding, is affected by the implemented mating scheme. It is therefore
obvious that other mating systems, including different kinds of non-random
mating, that has been shown to affect the rate of inbreeding, also changes the
distribution of the long-term genetic contributions. Further studies might reveal
the underlying impact of the different mating systems on the development of
the genetic contributions.
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APPENDIX A: PREDICTING THE REGRESSION PARAMETERS

In the following, the genetic variance among selected parents of sex q at
equilibrium is defined as:

σ2
Aq = (1 − kqr2

IA)σ2
A

where kq is the variance reduction factor for parents of sex q, rIA is the accuracy
of the selection criterion (equal for the two sexes in this study), and σ2

A is the
equilibrium genetic variance of the population.

The two linear models describing the inheritance of selective advantages
were calculated from the following vectors and matrices, which contain vari-
ances and covariances between the selective advantages of the parents and of
the offspring and the selection criterion of the offspring [18]:

Sq, (co)variance matrix of selective advantages of parents of sex q.
Tpq, covariance matrix of selective advantages of offspring of sex p with se-
lective advantages of parents of sex q.
sq, covariance vector of selective advantages of parents of sex q with selection
criterion of offspring.
tp, covariance vector of selective advantages of offspring of sex p with selec-
tion criterion of offspring.
σ2

I , variance of selection criterion.

Sm =



(
1 − 1

Nm

)
σ2

Am 0

0

(
1

dm
− 1

N f

)
σ2

A f


,

Sf =
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N f

)
σ2

A f 0

0

(
1
df
− 1

Nm

)
σ2

Am


,
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[
Tmm Tmf

Tfm Tff

]
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[
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Nm

)
σ2
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0(

1 − 1
Nf

)
σ2

I

0


.

From the matrices above, the matrices of regression parameters for the two
models, Λ and Π , were calculated sub-matrix by sub-matrix using the follow-
ing algorithm:

1. Set q = male parents, subscript m.
2. Calculate the 1 by 2 vector wq = sT

q S−1
q .

3. Set p = male offspring, subscript m.
4. Calculate the 1 by 2 vector λpq =

ip

σI
wq.

5. Calculate the 2 by 2 matrix πpq =

(
Tpq − kp

σ2
I
tpsT

q

)
S−1

q .

6. Repeat 4. and 5. for p = female offspring, subscript f .
7. Repeat 2. to 6. for q = female parents, subscript f .

8. Construct Λ =

[
λmm λmf

λfm λff

]
, which is a 2 by 4 matrix.

9. Construct Π =

[
πmm πmf

πfm πff

]
, which is a 4 by 4 matrix.

Then the vector of β’s was calculated using these matrices:

β = N−1
(
I − 1

2
ΠT

)−1 (
1
2
ΛT

) [ 1
2
1
2

]

where N = diag(Nm,Nm,N f ,N f ), and I is a 4 by 4 identity matrix.
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The β’s quantify the effect of selective advantages on the long-term genetic
contributions of selected animals of a certain sex. The selective advantages are
all things affecting this contribution. Therefore, in calculating the regression
coefficients only the selective advantages of the given sex were considered and
covariances between selective advantages of male and female parents were
ignored. As a result, the λ’s and π’s were calculated as regressions on the se-
lective advantages of parents separately for male and female parents in step 4
and 5. Consequently, the λ’s quantify the effect of the selective advantages on
the selection criteria of the offspring. And the π’s quantify the effect of the
selective advantages on the selective advantages of the offspring. In this way,
the gene flow of an individual is calculated based on the selective advantages,
and the rate of inbreeding is calculated from the sum of squared expectations
of gene flow over individuals.

APPENDIX B: EXPECTATIONS, VARIANCES,
AND COVARIANCES

The expectations, variances, and covariances in equations (2) and (4) were
calculated using standard index theory and given in Table B.I. The regression
of the index on the Mendelian sampling term, τw, which was used in the pa-
rameters below, were derived from the index weights, c1 to c4:

τw = c1 + (c2 − c1)
1
n
+ (c3 − c2)

1
ndm
+ (c4 − c2)

1
ndf

where n is the number of offspring per mating, dm is the number of dams mated
to each sire, and df is the number of sires mated to each dam.

Using equal weights of the information sources resulted in mass selection in
which case τw = h2, σI = hσA, r2

IA = h2. In this case, the formulas in the right
column collapsed to the ones in the middle column. This provided a check,
that the (co)variances of the information sources were calculated correctly.

APPENDIX C: PREDICTING THE POISSON CORRECTION

This appendix describes the calculation of the correction of the rate of in-
breeding due to deviation of family sizes after selection from a Poisson distri-
bution. The calculation followed Woolliams and Bijma [16], but was extended
to be applied to factorial mating.

For q = male or female parents in equation (4) δq= αTVn(q),devα, where
αT =

[
αm α f

]
, and Vn(q),dev is a 2 by 2 matrix with (co)variance deviations
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Table B.I. List of expectations, covariances, and variances used in equations (2)
and (4) calculated from standard index theory.

Parameter Mass selection Index selection

E[ai(q) | i is selected] 1
2σ

2
A,0iqσ−1

P
1
2σ

2
A,0iqτwσ−1

I

Cov(si(q),1 − s̄q,1; ai(q)) 1
2

(
1 − 1

Nq

) (
1 − kqh2

)
σ2

A,0
1
2

(
1 − 1

Nq

) (
1 − kqτw

)
σ2

A,0

Cov(si(q),2 − s̄q,2; ai(q)) 0 0

Var(si(q),1 − s̄q,1)
(
1 − 1

Nq

) (
1 − kqh2

)
σ2

A

(
1 − 1

Nq

) (
1 − kqr2

IA

)
σ2

A

Var(si(m),2 − s̄m,2)
(

1
dm
− 1

N f

) (
1 − k f h2

)
σ2

A

(
1

dm
− 1

N f

) (
1 − k f r2

IA

)
σ2

A

Var(si( f ),2 − s̄ f ,2)
(

1
df
− 1

Nm

) (
1 − kmh2

)
σ2

A

(
1
df
− 1

Nm

) (
1 − kmr2

IA

)
σ2

A

σ2
A,0 is the genetic variance in the unselected base population; σ2

A is the genetic vari-
ance under Bulmer equilibrium; σP is the equilibrium phenotypic standard deviation;
σI is the equilibrium standard deviation of the index; τw is the regression of the index
on the Mendelian sampling term; h2 is the equilibrium heritability; kq is the variance
reduction factor for parents of sex q; and rIA is the equilibrium accuracy of the index.

from independent Poisson variances of the number of male and female off-
spring selected. This ignored the differences in the expected long-term genetic
contributions of the offspring, because only the overall contribution for each
sex, i.e. αq, is considered. This, however, only leads to small errors [3].

In order to derive the variance deviations, the probability of co-selection of
sibs was quantified by the value of R(pm, pf , ρ), which gives the ratio of the
probability under no correlation between candidates and the probability, when
the correlation equals ρ. R(pm, pf , ρ) was approximated using formula (3.4) of
Mendell and Elston [10] and following Wray et al. [22]:

R(pm, pf , ρ) ≈ pf

Φ
[(

imρ − ν f

) (
1 − kmρ2)− 1

2

] (C.1)

where pr, ir, kr, and νr are the selected proportion, the selection intensity, the
variance reduction factor, and the standardised truncation point of sex r, re-
spectively. ρ is the correlation between selection criteria of the candidates for
selection.

(C.1) gives the ratio for co-selection of sibs of different sex. For co-selection
of sibs of the same sex, the selection parameters were all derived from the
selected proportion of that sex. There are different R-values for different
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relationships, i.e. full sibs, paternal half sibs, and maternal half sibs, depending
on the correlation between the candidates of interest.

The elements of the matrices of (co)variance deviations, Vn(q),dev, are the
part of the variance of family size not accounted for by the linear model (1).
They were derived using factorial hypergeometric sampling moments follow-
ing the approximate approach of Burrows [6,7] and Woolliams and Bijma [16].
The following parameters were used: nr is the number of offspring of sex r per
mating, in this study nm = nf ,Nq is the number of parents of sex q, T is the
number of candidates available for selection of each sex, dm is the number of
dams mated to each sire, and df is the number of sires mated to each dam, ρFS

and ρPHS are correlations of selection criteria of full-sibs and paternal half-
sibs, respectively, and λi j is the element in the ith row and jth column of Λ.

For male parents, the number of selected offspring of sex r from a family
with sire i, ni∗(r), is considered. The first diagonal element is:

Var[ni∗(m)] − E[ni∗(m) | selective advantages of i]

= E[ni∗(m) · (ni∗(m) − 1)] − E[ni∗(m) | selective advantages of i]2

≈


dm

(
1 − 1

nr

)

R(pm, pm, ρFS )
+

dm(dm − 1)
R(pm, pm, ρPHS )


[
n2
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T (T − 1)

]

−
(
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12Var(si(m),2 − s̄m,2)

)

and the second diagonal element is:

Var[ni∗( f )] − E[ni∗( f ) | selective advantages of i]

= E[ni∗( f ) · (ni∗( f ) − 1)] − E[ni∗( f ) | selective advantages of i]2

≈
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The off-diagonal element is:

Cov[ni∗(m); ni∗( f )]

= E[ni∗(m) · ni∗( f )] − E[ni∗(m) | selective advantages of i]E[ni∗( f )

| selective advantages of i]

≈
[

dm

R(pm, pf , ρFS )
+

dm(dm − 1)
R(pm, pf , ρPHS )

] 
n2

r NmN f

T 2



−
(
dm

df

) (
1 + λ11 · λ21 · Var(si(m),1 − s̄m,1) + λ12 · λ22 · Var(si(m),2 − s̄m,2)

)
.

For female parents, the number of selected offspring of sex r from a family with
dam j is considered, and the terms corresponding to the above were calculated
using parameters applying to female parents.

If df = 1, i.e. hierarchical mating, the terms involving maternal half sibs
disappear, because these contain the expression (df−1). If df = 1 and Nm = N f ,
then dm = 1 and the terms involving paternal half sibs disappear, because these
contain the expression (dm − 1).
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