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Abstract – Simulated data were used to investigate the influence of the choice of priors on
estimation of genetic parameters in multivariate threshold models using Gibbs sampling. We
simulated additive values, residuals and fixed effects for one continuous trait and liabilities of
four binary traits, and QTL effects for one of the liabilities. Within each of four replicates six
different datasets were generated which resembled different practical scenarios in horses with
respect to number and distribution of animals with trait records and availability of QTL infor-
mation. (Co)Variance components were estimated using a Bayesian threshold animal model via
Gibbs sampling. The Gibbs sampler was implemented with both a flat and a proper prior for
the genetic covariance matrix. Convergence problems were encountered in > 50% of flat prior
analyses, with indications of potential or near posterior impropriety between about round 10 000
and 100 000. Terminations due to non-positive definite genetic covariance matrix occurred in
flat prior analyses of the smallest datasets. Use of a proper prior resulted in improved mixing
and convergence of the Gibbs chain. In order to avoid (near) impropriety of posteriors and ex-
tremely poorly mixing Gibbs chains, a proper prior should be used for the genetic covariance
matrix when implementing the Gibbs sampler.

Gibbs sampling / multivariate threshold model / covariance estimates / flat prior / proper
prior

1. INTRODUCTION

The use of Bayesian methodology implemented via Gibbs sampling (GS)
for variance components estimation has considerably increased in the last
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decade. Programs which support linear as well as threshold or mixed linear-
threshold model analyses are accessible and have been used in several
heritability and genetic correlation studies and genetic evaluations in cattle,
sheep, pigs and other species e.g. [1, 9, 10, 12, 24, 29].

Although GS has considerably simplified the use of Bayesian methods, it
is often still difficult to implement an efficient Gibbs sampler. Performance of
GS can be influenced by the choice of prior distribution in the formulation of
the joint posterior distribution. The amount of prior knowledge on the param-
eters of interest determines the choice of priors for GS. In many studies flat
priors have been used for the genetic (co)variance matrix in order to account
for the lack of prior knowledge or the reluctance to use existing prior knowl-
edge e.g. [28]. For linear models it has been shown that flat priors may lead to
proper posteriors, but that they do not necessarily [5, 7]. For threshold models
and binary traits it has been shown that poor results can also be obtained when
the posterior is close to an improper density [18]. Furthermore, impropriety of
posteriors may not be easy to determine, implying the risk of obtaining mis-
leading results [4, 7, 18, 27].

The aim of this study was to investigate the influence of two priors for the
genetic (co)variance matrix on the posterior distributions of genetic parameters
in multivariate threshold models using Gibbs sampling. Data sets differing in
the amount and distribution of available information were analyzed in order to
characterize mixing and convergence properties of the Gibbs sampler and the
accuracy of the estimates of the genetic covariance matrix when using a flat or
a proper prior in connection with different data constellations encountered in
the horse industry.

2. MATERIALS AND METHODS

2.1. Data simulation

Simulated data were used for this study. Simulation included fixed effects,
residual and additive genetic variances for one continuous trait (T1) and lia-
bilities of four categorical traits (T2–T5), and QTL effects for one categorical
trait (T2). Simulation parameters chosen reflected the situation encountered
in the Warmblood horse with respect to conformation and radiographic health
traits [22]. Quantitative trait loci (QTL) effects were simulated for T2, assum-
ing two QTL, two flanking markers per QTL, and five randomly distributed
and equally prevalent alleles per marker. Total QTL variance was set equal to
the additive genetic variance of T2, with one of the marker alleles being linked
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to the unfavorable QTL allele, i.e. the allele increasing the probability of T2,
no recombination between genetic markers and QTL, and polymorphism infor-
mation content (PIC) of 0.9 of all markers. Heritabilities were set to 0.50 (T1),
0.25 (T3, T5) and 0.10 (T2, T4). Additive genetic correlations were 0.20 be-
tween T1 and T2 and between T1 and T3, and −0.20 between T1 and T4 and
between T4 and T5. For the categorical traits, simulation on the linear scale
was followed by dichotomization in order to obtain trait prevalences of 25%
(T2, T5) or 10% (T3, T4). Assumptions for the simulation included: a male
to female ratio of 1:1; random mating of 9000 dams and 400 sires per genera-
tion with equal size of maternal (n = 5) and different size of paternal half-sib
groups (n = 5, 150 or 500); and existence of 5 contemporary groups per gener-
ation, with 2 contemporary groups each being represented in two subsequent
generations.

From the simulated population, which included seven generations and
40 000 animals per generation, samples of 10 000 animals were randomly
drawn from the fourth generation. The pedigree of these animals was traced
back for three generations. Sampling was performed four times in order to
generate the four replicates used for this study. Within each of the four repli-
cates, six different datasets were created for the genetic analyses. Dataset A1
included all 10 000 animals with records for the continuous trait and the four
binary traits, information on the fixed effects of sex and contemporary group,
and three generations of pedigree information. Dataset B1 included 5000 ani-
mals, randomly chosen from the animals included in dataset A1, with respec-
tive information on traits, sex, contemporary group and pedigree. Dataset C1
included the same animals and the same information as dataset B1, and ad-
ditional information on the marker genotype of the animals. Dataset B2 in-
cluded the same animals as datasets B1 and C1 plus their parents with infor-
mation on traits, sex, contemporary group and pedigree. Dataset C2 included
the same animals and the same information as dataset B2, and additional in-
formation on the marker genotype of the animals. Dataset A2 included the
same animals as datasets B2 and C2 plus the additional 5000 animals which
were included in dataset A1 with information on traits, sex, contemporary
group and pedigree. The average size of paternal halfsib groups ranged be-
tween 16.4 and 29.0, and the average size of maternal halfsib groups ranged
between 1.2 and 1.6 among the animals with trait records in the six datasets.
In the four replicates the total number of animals in the relationship matrix
ranged between 30 618 and 30 766 for dataset A1, between 37 164 and 37 292
for dataset 2, between 19 226 and 19 986 for datasets B1 and C1, and be-
tween 26 429 and 26 556 for datasets B2 and C2.
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2.2. Covariance estimation

Genetic parameters were estimated using Gibbs sampling with the thresh-
old version of the Multiple Trait Gibbs Sampler for Animal Models (MT-
GSAM) [23]. This software supports multivariate genetic analyses of any com-
bination of continuous and categorical traits and permits the user to specify
starting values and priors for additive genetic and residual (co)variance ma-
trices. Random and residual effects are assumed to be normally distributed.
Flat priors are used for the fixed effects. For our analyses, a starting value of
one was chosen for all additive genetic variances, a starting value of zero was
chosen for all additive genetic covariances, and the residual covariances be-
tween all traits were fixed to zero. In uni- and multivariate binary threshold
models, the values for the thresholds and the residual variances are fixed to
values of zero and one, respectively, to ensure identifiability of the model [6].
We additionally fixed the residual covariances for two reasons. First, the values
used for these parameters in the data simulation are small and so are the values
found in real data for our traits of interest. Second, it is not trivial to sample the
residual covariance matrix subject to the restriction of diagonal elements fixed
at one, and effective methods for this task are still being developed. A flat prior
was used for the residual variance of the continuous trait (T1). For the genetic
covariance matrix a flat prior was adopted in the first set of genetic analyses,
and a proper prior using an inverse Wishart distribution (IW) with minimum
shape parameter (i.e. νIW = n + 2 for multivariate analysis of n traits) was
adopted in the second set of genetic analyses. A small value for the IW shape
parameter indicates little certainty about the genetic covariance matrix, i.e. a
relatively flat, but proper distribution.

The following model was used for all genetic analyses:

yijk = µ + Fi + aj + eijk

with yijk = observation on trait T1 (continuous) or trait T2, T3, T4 or T5 (bi-
nary) for the animal j,
µ = model constant,
Fi = fixed effect component

with Fi = SEXl + CONTm for analyses of datasets A1, A2, B1 and B2, and
Fi = SEXl + CONTm + QTLn for analyses of datasets C1 and C2, and
SEXl = fixed effect of the sex of the animal (l = 1, 2),
CONTm = fixed effect of the contemporary group (m = 1, ..., 5 in analyses

of datasets A1, B1 and C1; m = 1−8 in analyses of datasets A2, B2 and C2),
QTLn = fixed effect of the QTL marker genotype (n = 1, 2, 3),
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aj = random additive genetic effect of animal j ( j = 1, ..., 30 618 to 30 766
for dataset A1; j = 1, ..., 37 164 to 37 292 for dataset A2; j = 1, ..., 19 226
to 19 986 for datasets B1 and C1; and j = 1, ..., 26 429 to 26 556 for datasets B2
and C2), and

eijk = random residual.

2.3. Statistical analyses

For all analyses the total length of the Gibbs chain was set to 205 000,
with all samples after round 5000 being saved. The number of rounds rec-
ommended to be additionally discarded as burn-in was calculated as proposed
by Raftery and Lewis using the program GIBBSIT Version 2.0 [19]. Conver-
gence of the Gibbs chain and length of burn-in was additionally checked by
visual inspection of sample plots. Only post-convergence samples were con-
sidered further. Effective sample sizes and Monte Carlo errors were calculated
for all (co)variance estimates by the times series method implemented in the
postgibbs analysis program POSTGIBBSF90 with a thinning rate of ten [25].
Unthinned chains were used to calculate posterior means of additive genetic
(co)variance, heritability and additive genetic correlation estimates. Bias of
heritability and additive genetic correlation estimates was calculated as the
mean deviation of the estimated values from the true (i.e. simulated) values.

The influence of the prior on bias, effective sample size, and Monte Carlo
error was tested via analysis of variance using the GLM procedure of the Sta-
tistical Analysis System [21]. Bias, effective sample size or Monte Carlo error
were considered as dependent variable, and dataset (A1, A2, B1, B2, C1, C2)
and prior (flat, proper) were considered as fixed effects.

3. RESULTS

3.1. Convergence and mixing of Gibbs chains

Amongst the 24 runs with flat priors for the genetic covariance matrix, two
analyses of dataset C1 and one analysis of dataset B1 terminated because the
genetic covariance matrix was not positive definite in the Cholesky decom-
position. The terminations occurred after about 180 000 to 194 000 rounds of
Gibbs sampling. Terminations did not occur in the 24 runs with proper priors
for the genetic covariance matrix.

The calculated number of rounds recommended to be additionally discarded
as burn-in was in the range of 100 to 2000 for the flat prior and 100 to 1500
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Table I. Mean, minimum and maximum lengths of burn-in in the analyses of different
datasets generated in each of the four replicates using a flat or a proper prior for the
genetic covariance matrix.

Prior Dataset
A1 A2 B1 B2 C1 C2

Flat mean 43 750 27 000 97 667 48 750 36 000 86 250
min 5000 5000 55 000 25 000 15 000 20 000
max 85 000 45 000 175 000 70 000 57 000 175 000

Proper mean 18 250 9750 20 750 14 750 18 250 18 750
min 11 000 5000 5000 9000 13 000 15 000
max 30 000 15 000 35 000 20 000 25 000 25 000

for the proper prior. However, visual inspection of sample plots revealed that
periods of seemingly stationary distributions were frequently followed by non-
stationary sample series of different length. In order to be sure that convergence
was obtained, length of burn-in was therefore set to 5000 to 175 000 rounds for
the flat prior and to 5000 to 35 000 rounds for the proper prior. Mean, minimum
and maximum lengths of burn-in in the analyses of the six different datasets
are given in Table I. Regardless of the amount and the distribution of available
information, the burn-in period was consistently shorter with the proper prior
than with the flat prior.

Inspection of sample plots revealed slow mixing properties in all three runs
which terminated and in 10 of the 21 runs with a flat prior that did not ter-
minate. In these cases, the sample values for the additive genetic variance of
trait T2 or T4 remained near zero for large blocks of consecutive cycles of sam-
pling. In one case this occurred as late as around round 170 000. In another
case there was a period of slow mixing with respect to the additive genetic
variance of trait T2 from about round 110 000 to round 175 000, then mixing
improved and the samples departed from zero. Slow mixing was observed in
all three completed analyses of dataset B1, and in one of the two completed
analyses of dataset C1. Slow mixing was not observed in the flat prior analyses
of dataset A2 and the proper prior analyses of all datasets. Comparison of sam-
ple plots from flat prior and proper prior analyses of the same datasets revealed
minor differences with respect to the additive genetic and residual variances of
the continuous trait (T1), but showed considerably better mixing for all other
(co)variance parameters with the proper prior (see Figs. 1 to 4).
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Figure 1. Sample plots for the additive genetic variances of the binary traits T2 to T5
in an analysis of dataset A1 using a flat prior for the genetic covariance matrix.

Figure 2. Sample plots for the additive genetic variances of the binary traits T2 to
T5 in an analysis of dataset A1 using a proper prior for the genetic covariance matrix
(same dataset as in Fig. 1).

3.2. Effective sample sizes

Mean, minimum and maximum effective sample sizes for the sampled
(co)variance parameters are given in Table II. For all parameters effective sam-
ple sizes were on average larger when the proper prior was used for the ge-
netic covariance matrix than when the flat prior was used. With few excep-
tions (σa

2
4 in datasets A1 and C2, cova14 in datasets A2 and C2, cova35 in
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Figure 3. Sample plots for additive genetic covariances between continuous trait T1
and binary traits T2, T3 and T4 and between the two binary traits T4 and T5 in an
analysis of dataset A1 using a flat prior for the genetic covariance matrix (same dataset
as in Figs. 1 and 2).

Figure 4. Sample plots for additive genetic covariances between continuous trait T1
and binary traits T2, T3 and T4 and between the two binary traits T4 and T5 in an
analysis of dataset A1 using a flat prior for the genetic covariance matrix (same dataset
as in Figs. 1 to 3).
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Table II. Mean, 25% percentile (P25%) and 75% percentile (P75%) of effective sam-
ple sizes calculated for the additive genetic variances (σa

2) of traits T1 to T5, the
residual variance (σ2

e) of trait T1 and the additive genetic covariances (cova) between
traits T1 to T5 when using a flat or a proper prior for the genetic covariance matrix.

(Co)Variance parameter Flat prior Proper prior
Mean (P25%, P75%) Mean (P25%, P75%)

σa
2

1 821.45 (334.9, 1288.2) 1050.64 (550.8, 1521.8)
σe

2
1 1085.45 (363.1, 1599.1) 1354.76 (611.5, 2111.1)

σa
2

2 48.18 (39.7, 59.8) 90.36 (68.7, 116.7)
σa

2
3 62.16 (50.6, 72.5) 88.98 (69.9, 107.1)

σa
2

4 52.84 (35.7, 60.9) 69.37 (48.7, 88.3)
σa

2
5 109.89 (62.2, 163.2) 157.61 (117.2, 201.6)

cova12 336.00 (323.9, 392.9) 500.82 (366.3, 595.5)
cova13 562.04 (465.2, 700.2) 716.23 (592.0, 812.2)
cova14 277.09 (173.9, 331.2) 317.96 (243.6, 400.1)
cova15 923.30 (691.5, 1171.3) 1208.43 (1081.7, 1330.1)
cova23 102.90 (72.9, 126.7) 157.89 (132.9, 183.6)
cova24 54.73 (25.0, 74.8) 108.80 (97.9, 123.6)
cova25 152.22 (104.2, 207.4) 230.53 (187.6, 272.9)
cova34 79.47 (57.8, 110.4) 130.27 (102.0, 158.2)
cova35 256.20 (170.6, 334.0) 294.60 (231.3, 361.4)
cova45 139.40 (62.8, 175.7) 183.61 (140.8, 245.3)

Trait characteristics (kind of trait / prevalence of binary trait, simulated heritability):
T1 - continuous, 0.50; T2 - binary / 0.25, 0.10; T3 - binary / 0.10, 0.25; T4 - binary / 0.10, 0.10;
and T5 - binary / 0.25, 0.25; with simulated additive genetic correlations of rg12 = 0.20, rg13 =

0.20, rg14 = −0.20, and rg45 = −0.20.

datasets A1 and C1) this finding was consistent and significant across datasets
with P < 0.01. Effective sample sizes smaller than 20 were estimated for σa

2
2,

σa
2

3, σa
2

4, cova12, cova23, cova24, cova25 and cova34 in analyses of datasets B1,
B2, C1 and C2 when the flat prior was used for the genetic covariance matrix.
Effective sample sizes were larger than 30 for all (co)variance parameters and
in all analyses when the proper prior was used. For most of the (co)variance
parameters the variance of the effective sample sizes was considerably smaller
with the proper prior.

3.3. Monte Carlo errors

Means of Monte Carlo errors ranged from 0.004 to 0.012 for the sampled
variances and from 0.002 to 0.003 for the sampled covariances in the flat
prior analyses. Corresponding values in the proper prior analyses were 0.003
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Table III. Mean, 25% percentile (P25%) and 75% percentile (P75%) of bias of es-
timated heritabilities (h2) and selected additive genetic correlations (rg) for traits T1
to T5 when using a flat or a proper prior for the genetic covariance matrix.

Genetic parameter Flat prior Proper prior
(simulated value) Mean (P25%, P75%) Mean (P25%, P75%)
h2

1 0.0248 (–0.0494, 0.0977) 0.0140 (–0.0512, 0.0841)
h2

2 –0.0352 (–0.1137, 0.0701) 0.3518 (0.0477, 0.6128)
h2

3 0.0475 (–0.0346, 0.1581) –0.0257 (–0.0969, 0.0459)
h2

4 –0.1984 (–0.6623, 0.1447) 0.1340 (–0.0020, 0.2444)
h2

5 0.1275 (0.0684, 0.1630) 0.0796 (0.0002, 0.1124)
rg12 –0.0310 (–0.5264, 0.1611) –0.2280 (–0.4903, –0.0285)
rg13 –0.1173 (–0.2179, –0.0414) –0.0643 (–0.5457, –0.0798)
rg14 0.1576 (–0.5653, 0.2267) –0.2919 (–0.5457, –0.0798)
rg45 0.7087 (–0.4088, 1.0340) –0.0272 (–0.3622, 0.4075)

Trait characteristics (kind of trait / prevalence of binary trait, simulated heritability):
T1 - continuous, 0.50; T2 - binary / 0.25, 0.10; T3 - binary / 0.10, 0.25; T4 - binary / 0.10, 0.10;
and T5 - binary / 0.25, 0.25; with simulated additive genetic correlations of rg12 = 0.20, rg13 =

0.20, rg14 = −0.20, and rg45 = −0.20.

to 0.009 for the sampled variances and 0.001 to 0.003 for the sampled covari-
ances. For most parameters the Monte Carlo errors and their variances were
significantly smaller with the proper prior (P < 0.05). Influence of the prior
on the Monte Carlo errors was more pronounced for the variance than for the
covariance estimates.

3.4. Bias

Mean, minimum and maximum bias of heritability and additive genetic cor-
relation estimates are given in Table III. Mean upward bias of more than 0.15
was determined for rg14 and rg45 in the flat prior analyses and for h2

2 in the
proper prior analyses. Mean downward bias of more than 0.15 was determined
for h2

4 in the flat prior analyses and for rg12 and rg14 in the proper prior anal-
yses. Differences between biases from flat and proper prior analyses were sig-
nificant across datasets for h2

2, h2
3, h2

4, rg14 and rg45 (P < 0.05). The results
from analyses of datasets including trait information on animals from two sub-
sequent generations (datasets A2, B2 and C2) were consistently less biased
than results from analyses of datasets with respective information on animals
from only one generation (datasets A1, B1 and C1). For the most parame-
ters, bias variance was considerably larger in the flat prior analyses than in the
proper prior analyses.
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4. DISCUSSION

In this study simulated datasets of different size and structure were used to
investigate the influence of the choice of priors for the genetic (co)variance ma-
trix on the posterior distributions of genetic parameters in multivariate thresh-
old models using Gibbs sampling. Choice of simulation parameters was very
specific, resembling data and pedigree structures encountered in the Warm-
blood horse [22]. Simulated data provided the basis for investigations of dif-
ferent aspects of multivariate genetic analyses in mixed linear-threshold animal
models. However, for this study only four population samples from one gener-
ation were used, but within each of these replicates six different datasets were
generated and analyzed comparatively.

Drawing conclusion from a Gibbs chain is conditional on being able to as-
sure that sampling has been from a proper posterior distribution. Only then
Gibbs conditionals correspond to an existing joint density, i.e. represent com-
patible conditional densities [2]. Mathematical proof of posterior propriety
may be infeasible, and in most applications empirical methods have been used
to identify convergence problems resulting from impropriety, near impropri-
ety, or very slow mixing [7]. In this study visual inspection of sample plots
revealed clear signs of convergence problems in more than 50 percent of the
runs in which a flat prior was used for the genetic covariance matrix. Termi-
nation occurred less often and much later than slow mixing was visible. How-
ever, in one of the flat prior analyses the course of the Gibbs chain indicated
convergence problems not until about round 170 000. A previous study which
found a prior-independent behavior of the Gibbs chain was based on Gibbs
chains of a total length of 5000 rounds [15]. In our study the total chain length
was 205 000, but for the flat prior analyses this number might still not be large
enough to ensure the detection of lack of convergence.

If the use of a flat prior for the genetic covariance matrix results in sampling
from an almost improper posterior, convergence of the whole set of parame-
ters might be extremely slow [18]. The large number of rounds that have to be
discarded as burn-in in these cases and the required increase of the total chain
length might render the flat prior approach infeasible in a practical setting. The
inclusion of continuous traits in multivariate analyses of categorical traits, i.e.
the use of a multivariate linear-threshold model, was previously found to im-
prove mixing behavior of the Gibbs chain [11,14,20,29]. However, in our study
joint analyses of continuous and categorical traits did not result in satisfactory
mixing in connection with the flat prior.

Improper posteriors can not only result from the use of improper priors, but
can also be caused by insufficient data structure [26]. Blowing-up of the Gibbs
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chain or trapping to zero can occur in the presence of the so-called extreme
category problem [16]. There was no extreme category problem in our data
with regards to the fixed factors, which had few levels.

Convergence problems are not always related to the extreme category
problem and are more likely to occur in the threshold than in the linear
model [8, 13]. In this study, mixing was generally considerably slower and
effective sample sizes were considerably smaller for the categorical traits than
for the continuous trait. In the flat prior analyses convergence problems oc-
curred with all datasets but the largest dataset in which trait information on
two subsequent generations of animals was available. In the proper prior anal-
yses convergence was also dependent on size and structure of the dataset, but
was attained for all datasets.

If an animal model is employed and there is only one observation per ani-
mal, accuracy of prediction of the random additive genetic animal effect and
bias of heritability and additive genetic correlations estimates depends on the
connectedness, i.e. the structure of the genetic covariance matrix [17]. In this
study the average size of paternal halfsib groups ranged between 16 and 29 in
the different datasets, and there were animals that had neither paternal nor ma-
ternal halfsibs included. This pedigree structure resembled a situation which is
commonly encountered in animal breeding. Limited information for the ran-
dom effects leads to a positive bias of heritability estimates, particularly for
those traits with low heritability [17]. Animal threshold model analyses can
lead to negatively biased estimates of additive genetic correlations between
continuous and binary traits [3]. The outputs of all runs which did not ter-
minate were included for the bias calculation, and heritabilities and additive
genetic correlations were somewhat biased with both the flat and the proper
prior. The previously reported pattern of bias was only seen in the analyses
with the proper prior, but not in the analyses with the flat prior. Here, the pat-
tern of bias was less consistent and differed considerably between replicates
and datasets. Superiority of the proper prior was less clear with respect to esti-
mation accuracy than with respect to mixing, but the most extreme biases were
seen in flat prior analyses.

For both linear and threshold models it has been shown that available con-
vergence diagnostics will not always succeed to identify impropriety of pos-
teriors, and the results which are based on a null recurrent or transient Gibbs
chain might appear reasonable [7, 18]. In practical applications of Gibbs sam-
pling for (co)variance component estimation using real data, results of anal-
ogous studies might not always be available for comparison purposes. In this
simulation study, comparison of estimated and true parameter values indicated
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that even if convergence of the Gibbs chain was attained, one cannot expect
unbiased estimates in an analysis of realistically structured data in a multi-trait
mixed linear-threshold animal model.

5. CONCLUSIONS

The use of a flat prior for the genetic covariance matrix in an analysis using
a multi-trait mixed linear-threshold animal model and Gibbs sampling may
lead to improper posteriors. Mixing and convergence can be extremely slow,
but convergence problems may be noticed only after a large number of rounds
of sampling. The use of a proper prior assures a proper posterior and results
in improved mixing and convergence of the Gibbs chain. In the absence of a
proven proper posterior with flat priors, a proper prior should be used for the
genetic covariance matrix to avoid misleading interpretations of Gibbs outputs.
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