Free Access
Issue
Genet. Sel. Evol.
Volume 32, Number 2, March-April 2000
Page(s) 129 - 141
DOI https://doi.org/10.1051/gse:2000110

References

1
Dempster A.P., Laird N.M., Rubin D.B., Maximum likelihood from incomplete data via the EM algorithm, J. R. Statist. Soc. B 39 (1977) 1-38.
2
Denis J.E., Schnabel R.B., Numerical methods for unconstrained optimization and non linear equations, Prentice-Hall Inc, Englewood Cliffs, New Jersey, 1983.
3
Diggle P.J., An approach to the analysis of repeated measurements, Biometrics 44 (1988) 959-971.
4
Diggle P.J., Liang K.Y., Zeger S.L., Analysis of longitudinal data, Oxford Science Publications, Clarendon Press, Oxford, 1994.
5
Foulley J.L., Quaas R.L., Heterogeneous variances in Gaussian linear mixed models, Genet. Sel. Evol. 27 (1995) 211-228.
6
Foulley J.L., Im S., Gianola D., Hoeschele I., Empirical Bayes estimation of parameters for n polygenic binary traits, Genet. Sel. Evol. 19 (1987) 197-224.
7
Foulley J.L., Gianola D., San Cristobal M., Im S., A method for assessing extent and sources of heterogeneity of residual variances in mixed linear models, J. Dairy Sci. 73 (1990) 1612-1624.
8
Foulley J.L., Quaas R.L., Thaon d'Arnoldi C., A link function approach to heterogeneous variance components, Genet. Sel. Evol. 30 (1998) 27-43.
9
Harville D.A., Recursive estimation using mixed linear models with autoregressive random effects, in: Variance Components and Animal Breeding, in: Proceedings of a Conference in Honor of C.R. Henderson, Cornell University, Ithaca, NY, 1979.
10
Henderson C.R., Sire evaluation and genetic trends, in: Proceedings of the animal breeding and genetics symposium in honor of Dr J Lush, American society of animal science-American dairy science association, Champaign, 1973, pp. 10-41.
11
Henderson C.R., Applications of linear models in animal breeding, University of Guelph, Guelph, 1984.
12
Lange K., A gradient algorithm locally equivalent to the EM algorithm, J. R. Stat. Soc B 57 (1995) 425-437.
13
Laird N.M., Ware J.H., Random effects models for longitudinal data, Biometrics 38 (1982) 963-974.
14
Little R.J.A., Rubin D.B., Statistical analysis with missing data. J. Wiley and Sons, New-York, 1977.
15
Liu C., Rubin D.B., The ECME algorithm: a simple extension of EM and ECM with fast monotone convergence, Biometrika 81 (1994) 633-648.
16
Liu C., Rubin D.B., Wu Y.N., Parameter expansion to accelerate EM: The PX-EM algorithm, Biometrika 85 (1998) 765-770.
17
Longford N.T., Random coefficient models, Clarendon Press, Oxford, 1993.
18
Meng X.L., Rubin D.B., Maximum likelihood estimation via the ECM algorithm: A general framework, Biometrika 80 (1993) 267-278.
19
Meng X.L., van Dyk D.A., Fast EM-type implementations for mixed effects models, J. R. Stat. Soc. B 60 (1998) 559-578.
20
Meyer K., Restricted maximum likelihood to estimate variance components for multivariate animal models with several random effects using a derivative-free algorithm, Genet. Sel. Evol. 21 (1989) 317-340.
21
Patterson H.D., Thompson R., Recovery of interblock information when block sizes are unequal, Biometrika 58 (1971) 545-554.
22
Pothoff R.F., Roy S.N., A generalized multivariate analysis of variance model useful especially for growth curve problems, Biometrika 51 (1964) 313-326.
23
Quaas R.L., REML Note book, Mimeo, Cornell University, Ithaca, New York, 1992.
24
Robert C., Foulley J.L., Ducrocq V., Inference on homogeneity of intra-class correlations among environments using heteroskedastic models, Genet. Sel. Evol. 27 (1995) 51-65.
25
Robert C., Foulley J.L., Ducrocq V., Estimation and testing of constant genetic and intra-class correlation coefficients among environments, Genet. Sel. Evol. 27 (1995) 125-134.
26
Robert-Granié C., Ducrocq V., Foulley J.L., Heterogeneity of variance for type traits in the Montbéliarde cattle breed, Genet. Sel. Evol. 29 (1997) 545-570.
27
San Cristobal M., Foulley J.L., Manfredi E., Inference about multiplicative heteroskedastic components of variance in a mixed linear Gaussian model with an application to beef cattle breeding, Genet. Sel. Evol. 25 (1993) 3-30.
28
Schaeffer L.R., Dekkers J.C.M., Random regressions in animal models for test-day production in dairy cattle, in: Proceedings 5th World Cong. Genet. Appl. Livest. Prod. 18 (1994) 443-446.
29
Self S.G., Liang K.Y., Asymptotic properties of maximum likelihood estimation and likelihood ratio tests under nonstandard conditions, J. Am. Stat. Assoc. 82 (1987) 605-610.
30
Stram D.O., Lee J.W., Variance components testing in the longitudinal mixed effects model, Biometrics 50 (1994) 1171-1177.
31
Titterington D.M., Recursive parameter estimation using incomplete data. J.R. Stat. Soc. B 46 (1984) 257-267.
32
Verbeke G., Molenberghs G., Linear mixed models in practice, Springer Verlag, New York, 1997.
33
Wade K.M., Quaas R.L., Solutions to a system of equations involving a first-order autoregression process, J. Dairy Sci. 76 (1993) 3026-3032.
34
Wade K.M., Quaas R.L., van Vleck L.D., Estimation of the parameters involved in a first-order autoregressive process for contemporary groups, J. Dairy Sci. 76 (1993) 3033-3040.


Abstract

Copyright INRA, EDP Sciences

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.