Free Access
Issue
Genet. Sel. Evol.
Volume 32, Number 6, November-December 2000
Page(s) 631 - 635
DOI https://doi.org/10.1051/gse:2000100

References

1
Besag J., Green P.J., Spatial statistics and Bayesian computation, J. R. Stat. Soc. B 55 (1993) 25-37.
2
Cochran W.G. Improvement by means of selection, in: Proceedings of the second Berkeley symposium on mathematical statistics and probability. University of California Press, Berkeley, 1951, pp. 449-470.
3
Damien P., Walker S., Sampling probability densities via uniform random variables and a Gibbs sampler. Technical report, Business School, University of Michigan, 1996.
4
Damien P., Wakefield J., Walker S., Gibbs sampling for Bayesian non-conjugate and hierarchical models by using auxiliary variables, J. R. Stat. Soc. B 61 (1999) 331-344.
5
Gianola D., Statistics in animal breeding, J. Am. Stat. Assoc. 95 (2000) 296-299.
6
Janss L.L.G., MaGGic: a package of subroutines for genetic analysis with Gibbs sampling, in: Proceedings of the 6th World Congress on Genetics applied to Livestock Production, Armidale, 27, 1998, pp. 459-460.
7
Robert C.P., Simulation of truncated normal variables, Stat. Comput. 5 (1995) 121-125.
8
Robert C.P., Casella G., Monte Carlo Statistical Methods, Springer, Berlin, 1999.
9
Sorensen D.A., Andersen S., Gianola D., Korsgaard I., Bayesian inference in threshold models using Gibbs sampling, Genet. Sel. Evol. 26 (1994) 333-360.

Abstract

Copyright INRA, EDP Sciences