Free Access
Issue
Genet. Sel. Evol.
Volume 33, Number 2, March-April 2001
Page(s) 133 - 152
DOI https://doi.org/10.1051/gse:2001113

References

1
Amos C.I., Elston R.C., Robust methods for the detection of genetic linkage for quantitative data from pedigrees, Genet. Epidemiol. 6 (1989) 349-360.
2
Berger J.O., Sellke T., Testing a null hypothesis: the irreconcilability of significance level and evidence, J. Am. Stat. Assoc. 82 (1987) 112-122.
3
Chib S., Marginal likelihood from the Gibbs output, J. Am. Stat. Assoc. 90 (1995) 1313-1321.
4
Carlin B.P., Chib S., Bayesian Model Choice via Markov chain Monte Carlo methods, J. R. Stat. Soc. B 57 (1995) 473-484.
5
Churchill G.A., Doerge R.W., Empirical threshold values for quantitative trait mapping, Genetics 138 (1994) 963-971.
6
García-Cortés L.A., Cabrillo C., Moreno C., Varona L., Hypothesis testing for the genetical background of quantitative traits, Genet. Sel. Evol. 33 (2001) 3-16.
7
Gelman A., Meng X.L., Simulating normalizing constants: from importance sampling to bridge sampling to path sampling, Stat. Sci. 13 (1998) 165-185.
8
Green P.J., Reversible jump Markov chain Monte Carlo computation and Bayesian model determination, Biometrika 82 (1995) 711-732.
9
Grignola F.E., Hoeschele I., Tier B., Mapping quantitative trait loci in outcross populations via residual maximum likelihood. I. Methodology, Genet. Sel. Evol. 28 (1996) 479-490.
10
Haley C.S., Knott S.A., Elsen J.M., Mapping quantitative trait loci in crosses between outbred lines using least squares, Genetics 136 (1994) 1195-1207.
11
Han C., Carlin B.P., MCMC methods for computing Bayes factors: A comparative review. Technical Report, Division of Biostatistics, School of Public Health, University of Minnesota, 2000.
12
Hastings W.K., Monte Carlo sampling methods using Markov Chains and their applications, Biometrika 82 (1970) 711-732.
13
Heath S.C., Markov Chain Monte Carlo segregation and linkage analysis for oligogenic models, Am. J. Hum. Genet. 61 (1997) 748-760.
14
Hill A., Quantitative linkage: a statistical procedure for its detection and estimation, Ann. Hum. Genet. 38 (1975) 439-449.
15
Hoeschele I., Elimination of quantitative trait loci equations in an animal model incorporating genetic marker data, J. Dairy Sci. 76 (1993) 1693-1713.
16
Hoeschele I., van Raden P.M., Bayesian analysis of linkage between genetic markers and quantitative trait loci. I. Prior Knowledge, Theor. Appl. Genet. 85 (1993) 953-960.
17
Hoeschele I., van Raden P.M., Bayesian analysis of linkage between genetic markers and quantitative trait loci. II. Combining Prior Knowledge with experimental evidence, Theor. Appl. Genet. 85 (1993) 946-952.
18
Hoeschele I., Uimari P., Grignola F.E., Zhang Q., Gage K.M., Advances in Statistical Methods to map Quantitative Trait Loci in Outbreed Populations, Genetics 147 (1997) 1445-1457.
19
Kass R.E., Raftery A.E., Bayes factors, J. Am. Stat. Assoc. 90 (1995) 773-795.
20
Knott S.A., Haley C.S., Aspects of maximum likelihood methods for the mapping of quantitative trait loci using full-sib families, Genetics 132 (1992) 1211-1222.
21
Lander E.S, Botstein D., Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps, Genetics 121 (1989) 185-199.
22
Lavine M., Schervish M.J., Bayes factors: What they are and what they are not, Am. Stat. 53 (1998) 119-122.
23
Lynch M., Walsh B., Genetics and analysis of Quantitative Traits, Sinauer Associates, Inc. Sunderland, Massachusetts, 1998.
24
Newton M.A., Raftery A.E., Approximate bayesian inference with the weighted likelihood bootstrap, J. R. Stat. Soc. B. 56 (1994) 3-48.
25
Pérez-Enciso M., Varona L., Rothschild M., Computation of identity by descent probabilities conditional on DNA markers via a Monte Carlo Markov Chain method, Genet. Sel. Evol. 32 (2000) 467-482.
26
Press W.H., Flannery B.P., Teulosky S.A., Vetterling W.T., Numerical Recipes. The art of scientific computing, Cambridge University Press. Cambridge, 1986.
27
Scheler P., Mangin B., Goffinet B., Le Roy P., Boichard D., Properties of the Bayesian approach to detect QTL compared to the flanking markers regression method, J. Anim. Breed. Genet. 115 (1998) 87-95.
28
Sillanpaa M.J., Arjas E., Bayesian mapping of multiple quantitative trait loci from incomplete outbred offspring data, Genetics 151 (1999) 1605-1619.
29
Thaller G., Hoeschele I., A Monte-Carlo method for Bayesian analysis of linkage between single markers of quantitative trait loci: I. Methodology, Theor. Appl. Genet. 93 (1996) 1161-1166.
30
Uimari P., Hoeschele I., Mapping-Linked Quantitative Trait Loci using Bayesian analysis and Markov Chain Monte Carlo algorithms, Genetics 146 (1997) 735-743.
31
Wang T., Fernando R.L., van Der Beek S., Grossman M., Covariance between relatives for a marked quantitative trait locus, Genet. Sel. Evol. 27 (1995) 251-274.
32
Waagepetersen R., Sorensen D., A tutorial on Reversible Jump MCMC with a view toward applications in QTL-mapping, Technical report, http://www.maths.surrey.ac.uk/personal/st/S.Brooks/MCMC/ (2000).
33
Weller J.I., Kashi Y., Soller M., Power of daughter and granddaughter designs for determining linkage between marker loci and quantitative trait loci in dairy cattle, J. Dairy Sci. 73 (1990) 2525-2537.
34
Xu S., Atchley W.R., A random model approach to interval mapping of quantitative trait loci, Genetics 141 (1995) 1189-1197.

Abstract

Copyright INRA, EDP Sciences