Free Access
Issue
Genet. Sel. Evol.
Volume 33, Number 4, July-August 2001
Page(s) 337 - 367
DOI https://doi.org/10.1051/gse:2001122

References

1
Bonney G.E., Compound regressive models for family data, Hum. Hered. 42 (1992) 28-41.
2
Cannings C., Thompson E.A., Skolnick E., Probability functions on complex pedigrees, Adv. Appl. Prod. 10 (1978) 26-61.
3
Elston R.C., Stewart J., A general model for the genetic analysis of pedigree data, Hum. Hered. 21 (1971) 523-542.
4
Fernández S.A., Fernando R.L., Determining peeling order using sparse matrix algorithms, J. Dairy Sci. (Submitted).
5
Fernández S.A., Fernando R.L., Carriquiry A.L., An algorithm to sample marker genotypes in a pedigree with loops, in: Proceedings of the American Statistical Association, Section on Bayesian Statistical Science, Alexandria, VA, 1999, pp. 60-65.
6
Fernando R.L., Stricker C., Elston R.C., An efficient algorithm to compute the posterior genotypic distribution for every member of a pedigree without loops, Theor. Appl. Genet. 87 (1993) 89-93.
7
Fernando R.L., Stricker C., Elston R.C., The finite polygenic mixed model: an alternative formulation for the mixed model of inheritance, Theor. Appl. Genet. 88 (1994) 573-580.
8
García-Cortés L.A., Sorensen D., On a multivariate implementation of the Gibbs sampler, Genet. Sel. Evol. 28 (1996) 121-126.
9
Gelman A., Carlin J.B., Stern H.S., Rubin D.B., Bayesian data analysis, Chapman & Hall, London, HS, 1995.
10
Geyer C., Practical Markov chain Monte Carlo, Stat. Sci. 7 (1992) 473-511.
11
Gilks W.R., Richardson S., Spiegelhalter D.J., Markov chain Monte Carlo in practice, Chapman & Hall, London, HS, 1996.
12
Guo S.W., Thompson E.A., A Monte Carlo method for combined segregation and linkage analysis, Am. J. Hum. Genet. 51 (1992) 1111-1126.
13
Hasstedt S.J., A mixed model approximation for large pedigrees, Comput. Biomed. Res. 15 (1982) 195-307.
14
Hasstedt S.J., A variance components/major locus likelihood approximation on quantitative data, Genet. Epidemiol. 8 (1991) 113-125.
15
Hasstedt S.J., Pedigree Analysis Package, revision 4.0 edn. Department of Human Genetics, University of Utah, Salt Lake City, UT, 1994.
16
Heath S.C., Generating consistent genotypic configurations for multi-allelic loci and large complex pedigrees, Hum. Hered. 48 (1998) 1-11.
17
Hoeschele I., VanRaden P.M., Bayesian analysis of linkage between genetic markers and quantitative trait loci. I. Prior knowledge, Theor. Appl. Genet. 85 (1993a) 953-960.
18
Hoeschele I., VanRaden P.M., Bayesian analysis of linkage between genetic markers and quantitative trait loci. II. Combining prior knowledge with experimental evidence, Theor. Appl. Genet. 85 (1993b) 946-952.
19
Hoeschele P., Uimari P., Grignola F.E., Zhang Q., Gage K.M., Advances in statistical methods to map quantitative trait loci in outbred populations, Genetics 147 (1997) 1445-1457.
20
Janss L.L.G., Thompson R., van Arendonk J.A.M., Application of Gibbs sampling for inference in a mixed major gene-polygenic inheritance model in animal populations, Theor. Appl. Genet. 91 (1995) 1137-1147.
21
Janss L.L.G., van Arendonk J.A.M., van der Werf J.H.J., Computing approximate monogenic model likelihoods in large pedigrees with loops, Genet. Sel. Evol. 27 (1995) 567-579.
22
Jensen C.S., Kong A., Blocking Gibbs sampling for linkage analysis in large pedigrees with many loops, Am. J. Hum. Genet. 65 (1999) 885-901.
23
Jensen C.S., Kong A., Kjærulff U., Blocking Gibbs sampling in very large probabilistic expert systems, Int. J. Hum. Comp. Stud. 42 (1995) 647-66.
24
Lange K., Boehnke M., Extensions to pedigree analysis. V. Optimal calculation of Mendelian likelihoods, Hum. Hered. 33 (1983) 291-301.
25
Lange K., Elston R.C., Extensions to pedigree analysis. I. Likelihood calculations for simple and complex pedigrees, Hum. Hered. 25 (1975) 95-105.
26
Sheehan N., Genetic restoration on complex pedigrees, PhD thesis, University of Washington, Seattle, WA, 1990.
27
Stricker C., Fernando R.L., Eltson R.C., An algorithm to approximate the likelihood for pedigree data with loops by cutting, Theor. Appl. Genet. 91 (1995) 1054-1063.
28
Thomas A., Approximate computations of probability functions for pedigree analysis, IMA J. Math. Appl. Med. Biol. 3 (1986a) 157-166.
29
Thomas A., Optimal computations of probability functions for pedigree analysis, IMJ J. Math. Appl. Med. Biol. 3 (1986b) 167-178.
30
Thomas D., Cortessis V., A Gibbs sampling approach to linkage analysis, Hum. Hered. 42 (1992) 63-76.
31
Thompson E.A., Monte Carlo likelihood in genetic mapping, Stat. Sci. 9 (1994a) 355-366.
32
Thompson E.A., Monte Carlo likelihood in the genetic mapping of complex traits, Phil. Trans. R. Soc. Lond. B. 344 (1994b) 345-351.
33
Thompson E.A., MCMC estimation of multi-locus genome sharing and multipoint gene location scores, Intern. Stat. Rev. 68 (2000) 53-73.
34
Thompson E.A., Heath S.C., Estimation of conditional multilocus gene identity among relatives, in: Seillier-Moseiwitch F., (Ed.), Statistics in molecular biology and genetics: selected proceedings of a 1997 joint AMS-IMS-SIAM Summer conference on statistics in molecular biology, IMS Lect. Note-Monograph Ser. 33, Hayward, CA, 1999, pp. 95-113.
35
Uimari P., Thaller G., Hoeschele I., The use of multiple markers in Bayesian methods for mapping quantitative trait loci, Genetics 143 (1996) 1831-1842.
36
Van Arendonk J.A.M., Smith C., Kennedy B.W., Method to estimate genotype probabilities at individual loci in farm livestock, Theor. Appl. Genet. 78 (1989) 735-740.
37
Wang T., Fernando R.L., Stricker C., Elston R.C., An approximation to the likelihood for a pedigree with loops, Theor. Appl. Genet. 93 (1996) 1299-1309.

Abstract

Copyright INRA, EDP Sciences