Free Access
Issue |
Genet. Sel. Evol.
Volume 33, Number 4, July-August 2001
|
|
---|---|---|
Page(s) | 337 - 367 | |
DOI | https://doi.org/10.1051/gse:2001122 |
References
- 1
- Bonney G.E., Compound regressive models for family data, Hum. Hered. 42 (1992) 28-41.
- 2
- Cannings C., Thompson E.A., Skolnick E., Probability functions on complex pedigrees, Adv. Appl. Prod. 10 (1978) 26-61.
- 3
- Elston R.C., Stewart J., A general model for the genetic analysis of pedigree data, Hum. Hered. 21 (1971) 523-542.
- 4
- Fernández S.A., Fernando R.L., Determining peeling order using sparse matrix algorithms, J. Dairy Sci. (Submitted).
- 5
- Fernández S.A., Fernando R.L., Carriquiry A.L., An algorithm to sample marker genotypes in a pedigree with loops, in: Proceedings of the American Statistical Association, Section on Bayesian Statistical Science, Alexandria, VA, 1999, pp. 60-65.
- 6
- Fernando R.L., Stricker C., Elston R.C., An efficient algorithm to compute the posterior genotypic distribution for every member of a pedigree without loops, Theor. Appl. Genet. 87 (1993) 89-93.
- 7
- Fernando R.L., Stricker C., Elston R.C., The finite polygenic mixed model: an alternative formulation for the mixed model of inheritance, Theor. Appl. Genet. 88 (1994) 573-580.
- 8
- García-Cortés L.A., Sorensen D., On a multivariate implementation of the Gibbs sampler, Genet. Sel. Evol. 28 (1996) 121-126.
- 9
- Gelman A., Carlin J.B., Stern H.S., Rubin D.B., Bayesian data analysis, Chapman & Hall, London, HS, 1995.
- 10
- Geyer C., Practical Markov chain Monte Carlo, Stat. Sci. 7 (1992) 473-511.
- 11
- Gilks W.R., Richardson S., Spiegelhalter D.J., Markov chain Monte Carlo in practice, Chapman & Hall, London, HS, 1996.
- 12
- Guo S.W., Thompson E.A., A Monte Carlo method for combined segregation and linkage analysis, Am. J. Hum. Genet. 51 (1992) 1111-1126.
- 13
- Hasstedt S.J., A mixed model approximation for large pedigrees, Comput. Biomed. Res. 15 (1982) 195-307.
- 14
- Hasstedt S.J., A variance components/major locus likelihood approximation on quantitative data, Genet. Epidemiol. 8 (1991) 113-125.
- 15
- Hasstedt S.J., Pedigree Analysis Package, revision 4.0 edn. Department of Human Genetics, University of Utah, Salt Lake City, UT, 1994.
- 16
- Heath S.C., Generating consistent genotypic configurations for multi-allelic loci and large complex pedigrees, Hum. Hered. 48 (1998) 1-11.
- 17
- Hoeschele I., VanRaden P.M., Bayesian analysis of linkage between genetic markers and quantitative trait loci. I. Prior knowledge, Theor. Appl. Genet. 85 (1993a) 953-960.
- 18
- Hoeschele I., VanRaden P.M., Bayesian analysis of linkage between genetic markers and quantitative trait loci. II. Combining prior knowledge with experimental evidence, Theor. Appl. Genet. 85 (1993b) 946-952.
- 19
- Hoeschele P., Uimari P., Grignola F.E., Zhang Q., Gage K.M., Advances in statistical methods to map quantitative trait loci in outbred populations, Genetics 147 (1997) 1445-1457.
- 20
- Janss L.L.G., Thompson R., van Arendonk J.A.M., Application of Gibbs sampling for inference in a mixed major gene-polygenic inheritance model in animal populations, Theor. Appl. Genet. 91 (1995) 1137-1147.
- 21
- Janss L.L.G., van Arendonk J.A.M., van der Werf J.H.J., Computing approximate monogenic model likelihoods in large pedigrees with loops, Genet. Sel. Evol. 27 (1995) 567-579.
- 22
- Jensen C.S., Kong A., Blocking Gibbs sampling for linkage analysis in large pedigrees with many loops, Am. J. Hum. Genet. 65 (1999) 885-901.
- 23
- Jensen C.S., Kong A., Kjærulff U., Blocking Gibbs sampling in very large probabilistic expert systems, Int. J. Hum. Comp. Stud. 42 (1995) 647-66.
- 24
- Lange K., Boehnke M., Extensions to pedigree analysis. V. Optimal calculation of Mendelian likelihoods, Hum. Hered. 33 (1983) 291-301.
- 25
- Lange K., Elston R.C., Extensions to pedigree analysis. I. Likelihood calculations for simple and complex pedigrees, Hum. Hered. 25 (1975) 95-105.
- 26
- Sheehan N., Genetic restoration on complex pedigrees, PhD thesis, University of Washington, Seattle, WA, 1990.
- 27
- Stricker C., Fernando R.L., Eltson R.C., An algorithm to approximate the likelihood for pedigree data with loops by cutting, Theor. Appl. Genet. 91 (1995) 1054-1063.
- 28
- Thomas A., Approximate computations of probability functions for pedigree analysis, IMA J. Math. Appl. Med. Biol. 3 (1986a) 157-166.
- 29
- Thomas A., Optimal computations of probability functions for pedigree analysis, IMJ J. Math. Appl. Med. Biol. 3 (1986b) 167-178.
- 30
- Thomas D., Cortessis V., A Gibbs sampling approach to linkage analysis, Hum. Hered. 42 (1992) 63-76.
- 31
- Thompson E.A., Monte Carlo likelihood in genetic mapping, Stat. Sci. 9 (1994a) 355-366.
- 32
- Thompson E.A., Monte Carlo likelihood in the genetic mapping of complex traits, Phil. Trans. R. Soc. Lond. B. 344 (1994b) 345-351.
- 33
- Thompson E.A., MCMC estimation of multi-locus genome sharing and multipoint gene location scores, Intern. Stat. Rev. 68 (2000) 53-73.
- 34
- Thompson E.A., Heath S.C., Estimation of conditional multilocus gene identity among relatives, in: Seillier-Moseiwitch F., (Ed.), Statistics in molecular biology and genetics: selected proceedings of a 1997 joint AMS-IMS-SIAM Summer conference on statistics in molecular biology, IMS Lect. Note-Monograph Ser. 33, Hayward, CA, 1999, pp. 95-113.
- 35
- Uimari P., Thaller G., Hoeschele I., The use of multiple markers in Bayesian methods for mapping quantitative trait loci, Genetics 143 (1996) 1831-1842.
- 36
- Van Arendonk J.A.M., Smith C., Kennedy B.W., Method to estimate genotype probabilities at individual loci in farm livestock, Theor. Appl. Genet. 78 (1989) 735-740.
- 37
- Wang T., Fernando R.L., Stricker C., Elston R.C., An approximation to the likelihood for a pedigree with loops, Theor. Appl. Genet. 93 (1996) 1299-1309.
Abstract
Copyright INRA, EDP Sciences