Free Access
Issue
Genet. Sel. Evol.
Volume 33, Number 6, November-December 2001
Page(s) 557 - 585
DOI https://doi.org/10.1051/gse:2001102

References

1
Carvalheira J.G.V., Blake R.W., Pollak E.J., Quaas R.L., Duran-Castro C.V., Application of an autoregressive process to estimate genetic parameters and breeding values for daily milk yield in a tropical herd of Lucerna cattle and in United States Holstein herds, J. Dairy Sci. 81 (1998) 2738-2751.
2
Diggle P.J., An approach to the analysis of repeated measurements, Biometrics 44 (1988) 959-971.
3
Diggle P.J., Liang K.Y., Zeger S.L., Analysis of Longitudinal Data, Oxford Science Publications, Clarendon Press, Oxford, 1994.
4
Eubank R.L., Speckman P., Curve fitting by polynomial-trigonometric regression analysis, Biometrika 77 (1990) 1-9.
5
Foulley J.-L., Jaffrézic F., Robert-Granié C., EM-REML estimation of covariance parameters in Gaussian mixed models for longitudinal data analysis, Genet. Select. Evol. 32 (2000) 129-141.
6
Foulley J.-L., Quaas R.L., Thaon d'Arnoldi C., A link function approach to heterogeneous variance components, Genet. Select. Evol. 30 (1998) 27-44.
7
Fuller W.A., Grafted polynomials as approximating functions, Austr. J. Agric. Econ. 13 (1969) 35-46.
8
Gilmour A.R., Thompson R., Cullis B.R., Average Information REML, an efficient algorithm for variance parameter estimation in linear mixed models, Biometrics 51 (1995) 1440-1450.
9
Graser H.-U., Smith S.P., Tier B., A derivative-free approach for estimating variance components in animal models by restricted maximum likelihood, J. Anim. Sci. 64 (1987) 1362-1370.
10
Harville D.A., Recursive estimation using mixed linear models with autoregressive random effects, in: Van Vleck L.D., Searle S.R. (Eds.), Variance Components and Animal Breeding, Cornell University, Proceedings Conference in Honor of Henderson C.R., Ithaca, NY, 1979, pp. 157-179.
11
Huggins R.M., Loesch D.Z., On the analysis of mixed longitudinal growth data, Biometrics 54 (1998) 583-595.
12
Jaffrézic F., White I.M.S., Thompson R., Hill W.G., A link function approach to model heterogeneity of residual variances over time in lactation curve analyses, J. Dairy Sci. 83 (2000) 1089-1093.
13
Jennrich R.I., Schluchter M.D., Unbalanced repeated-measures models with structured covariance matrices, Biometrics 42 (1986) 805-820.
14
Johnson D.L., Thompson R., Restricted maximum likelihood estimation of variance components for univariate animal models using sparse matrix techniques and average information, J. Dairy Sci. 78 (1995) 449-456.
15
Kenward M.G., A method for comparing profiles of repeated measurements, Appl. Stat. 36 (1987) 296-308.
16
Kirkpatrick M., Hill W.G., Thompson R., Estimating the covariance structure of traits during growth and aging, illustrated with lactations in dairy cattle, Genet. Res. 64 (1994) 57-69.
17
Kirkpatrick M., Lofsvold D., Bulmer M., Analysis of the inheritance, selection and evolution of growth trajectories, Genetics 124 (1990) 979-993.
18
Lindstrom M.J., Bates D.M., Newton-Raphson and EM algorithms for linear mixed-effects models for repeated-measures data, J. Amer. Stat. Ass. 83 (1988) 1014-1022.
19
Madsen P., Jensen J., Thompson R., Estimation of (co)variance components by REML in multivariate mixed linear models using average of observed and expected information, in: Proceedings Fifth World Congress on Genetics Applied to Livestock Production, 7-12 August 1994, University of Guelph, Ontario, Vol. 22, 1994, pp. 19-22.
20
Meyer K., An "average information'' restricted maximum likelihood algorithm for estimating reduced rank genetic covariance matrices or covariance functions for animal models with equal design matrices, Genet. Select. Evol. 29 (1997) 97-116.
21
Meyer K., "DXMRR'' - a program to estimate covariance functions for longitudinal data by restricted maximum likelihood., in: Proceedings Sixth World Congress on Genetics Applied to Livestock Production, 12-16 January 1998, University of New England, Armidale, Vol. 27, 1998, pp. 465-466.
22
Meyer K., Estimating covariance functions for longitudinal data using a random regression model, Genet. Select. Evol. 30 (1998) 221-240.
23
Meyer K., Estimates of genetic and phenotypic covariance functions for postweaning growth and mature weight of beef cows, J. Anim. Breed. Genet. 116 (1999) 181-205.
24
Meyer K., Random regressions to model phenotypic variation in monthly weights of Australian beef cows, Livest. Prod. Sci. 65 (2000) 19-38.
25
Meyer K., Estimates of direct and maternal covariance functions for growth of Australian beef calves from birth to weaning, Genet. Select. Evol. 33 (2001) 487-514.
26
Meyer K., Carrick M.J., Donnelly B.J.P., Genetic parameters for growth traits of Australian beef cattle from a multi-breed selection experiment, J. Anim. Sci. 71 (1993) 2614-2622.
27
Meyer K., Hill W.G., Estimation of genetic and phenotypic covariance functions for longitudinal data by restricted maximum likelihood, Livest. Prod. Sci. 47 (1997) 185-200.
28
Meyer K., Smith S.P., Restricted maximum likelihood estimation for animal models using derivatives of the likelihood, Genet. Select. Evol. 28 (1996) 23-49.
29
Mu noz A., Carey V., Schouten J.P., Segal M., Rosner B., A parametric family of correlation structures for the analysis of longitudinal data, Biometrics 48 (1992) 733-742.
30
Nelder J.A., Mead R., A simplex method for function minimization, Computer J. 7 (1965) 308-313.
31
Nú nez-Antón V., Woodworth G.G., Analysis of longitudinal data with unequally spaced observations and time-dependent correlated errors, Biometrics 50 (1994) 445-456.
32
Nú nez-Antón V., Zimmerman D.L., Modelling non-stationary longitudinal data, Biometrics 56 (2000) 699-705.
33
Pletcher S.D., Geyer C.J., The genetic analysis of age-dependent traits: Modeling the character process, Genetics 153 (1999) 825-835.
34
Pourahmadi M., Joint mean-covariance models with applications to longitudinal data: Unconstrained parameterisation, Biometrika 86 (1999) 677-690.
35
Schnyder U., Hofer A., Labroue L., Kuenzi N., Genetic parameters of a random regression model for daily feed intake of performance tested French Landrace and Large White growing pigs, Genet. Select. Evol. 33 (2001) 635-658.
36
Smith S.P, Differentiation of the Cholesky algorithm, J. Comp. Graph. Stat. 4 (1995) 134-147.
37
Wade K.M., Quaas R.L., Van Vleck L.D., Estimation of the parameters involved in a first order autoregressive process for contemporary groups, J. Dairy Sci. 76 (1993) 3033-3040.
38
Wolfinger R.D., Covariance structure selection in general mixed models, Comm. Stat. - Simul. Comp. 22 (1993) 1079-1106.
39
Zimmerman D.L., Nú nez-Antón V., ElBarmi H., Computational aspects of likelihood based estimation of first-order antedependence models, J. Stat. Comp. Simul. 60 (1998) 67-84.
40
Zimmermann D.L., Harville D.A., A random field approach to the analysis of field-plot experiments and other spatial experiments, Biometrics 47 (1991) 223-239.

Abstract

Copyright INRA, EDP Sciences