Free Access
Issue
Genet. Sel. Evol.
Volume 33, Number 6, November-December 2001
Page(s) 605 - 634
DOI https://doi.org/10.1051/gse:2001134

References

1
Abdel-Azim G., Freeman A.E., A rapid method for computing the inverse of the genetic covariance matrix between relatives for a marked Quantitative Trait Locus, Genet. Sel. Evol. 33 (2001) 153-174.
2
Almasy L., Williams J.T., Dyer T.D., Blangero J., Quantitative Trait Locus detection using combined linkage/disequilibrium analysis, Genet. Epidem. (1999) 17 (Suppl. 1) S31-S36.
3
Elston R.C., Stewart J., A general model for the analysis of pedigree data, Human Hered. 21 (1971) 523-542.
4
Fernando R.L., Grossman M., Marker-assisted selection using best linear unbiased prediction, Genet. Sel. Evol. 21 (1989) 246-477.
5
Gilks W.R., Richardson S., Spiegelhalter D.J., Markov chain Monte Carlo in practice, Chapman and Hall, London, 1996.
6
Goddard M.E., A mixed model for analyses of data on multiple genetic markers, Theor. Appl. Genet. 83 (1992) 878-886.
7
Guo S.W., Computation of multilocus prior probability of autozygosity fro complex inbred pedigrees, Genet. Epidemiol. 14 (1997) 1-15.
8
Haldane J.B.S., The combination of linkage values, and the calculation of distances between loci of linked factors, J. Genet. 8 (1919) 299-309.
9
Hoeschele I., Uimari P., Grignola F.E., Zhang Q., Gage K.M., Advances in statistical methods to map quantitative trait loci in outbred populations, Genetics 147 (1997) 1445-1457.
10
Hudson R.R., The sampling distribution of linkage disequilibrium under an infinite alleles model without selection, Genetics 109 (1985) 611-631.
11
Hudson R.R., The how and why of generating gene genealogies, in: Takahata N., Clarck A.G. (Eds.), Mechanics of Molecular Evolution, Sinauer, Sunderland, 1993, pp. 23-36.
12
Maccluer J.W., Vandeberg J.L., Read B., Ryder O.A., Pedigree analysis by computer simulation, Zoo Biol. 5 (1986) 147-160.
13
McPeek M.S., Strahs A., Assessment of linkage disequilibrium by the decay of haplotype sharing, with application to fine scale genetic mapping, Am. J. Hum. Genet. 65 (1999) 858-875.
14
Meuwissen T.H.E., Goddard M.E., Fine mapping of quantitative trait loci using linkage disequilibria with closely linked marker loci, Genetics 155 (2000) 421-430.
15
Patterson A.H., Molecular dissection of quantitative traits: progress and prospects, Genome Res. 5 (1995) 321-333.
16
Perez-Enciso M., Varona L., Rothschild, M.F., Computation of identity by descent probabilities conditional on DNA markers via a Monte Carlo Markov Chain method, Genet. Sel. Evol. 32 (2000) 467-482.
17
Rabinowitz D., A transmission disequilibrium test for quantitative trait loci, Hum. Hered. 47 (1997) 342-350.
18
Schaffer A.A., Computing probabilities of homozygosity by descent, Genet. Epidemiol. 16 (1999) 135-149.
19
Spielman R., McGinnis R., Ewens W., Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM), Am. J. Hum. Genet. 52 (1993) 506-516.
20
Sved J. A., Linkage disequilibrium and homozygosity of chromosome segments in finite populations, Theor. Pop. Biol. 2 (1971) 125-141.
21
Terwilliger J.D., A powerful likelihood method for the analysis of linkage disequilibrium between trait and one or more polymorphic marker loci, Am. J. Hum. Genet. 56 (1995) 777-787.
22
Thompson E.A., Monte Carlo estimation of multilocus autozygosity probabilities, in: Proc. 1994 Interface Conference, SAS® , Cary, NC, 1994, pp. 498-506.
23
Wang T., Fernando R.L., Van der Beek S., Grossman M., Van Arendonk J.A.M., Covariance between relatives for a marked quantitative trait locus, Genet. Sel. Evol. 27 (1995) 251-274.
24
Weller J.I., Kashi Y., Soller M., Power of daughter and granddaughter designs for determining linkage between marker loci and quantitative trait loci in dairy cattle, J. Dairy Sci. 73 (1990) 2525-2537.
25
Wright S., Evolution and the Genetics of Populations. Vol. 2: The Theory of Gene Frequencies, University of Chicago, Chicago, 1969.

Abstract

Copyright INRA, EDP Sciences