Free Access
Issue
Genet. Sel. Evol.
Volume 34, Number 5, September-October 2002
Page(s) 537 - 555
DOI https://doi.org/10.1051/gse:2002022

References

  1. Bonney G.E., Compound regressive models for family data, Hum. Hered. 42 (1992) 28-41.
  2. Cannings C., Thompson E.A., Skolnick M.H., Probability functions on complex pedigrees, Adv. Appl. Prod. 10 (1978) 26-61.
  3. Elston R.C., Stewart J., A general model for the genetic analysis of pedigree data, Hum. Hered. 21 (1971) 523-542.
  4. Fernández S.A., An algorithm to sample genotypes in complex pedigrees, Ph.D. thesis, Iowa State University, 2001.
  5. Fernández S.A., Fernando R.L., Carriquiry A.L., An algorithm to sample marker genotypes in a pedigree with loops, in: Proc. of the American Statistical Association, Section on Bayesian Statistical Science, Alexandria, VA, 1999, pp. 60-65.
  6. Fernández S.A., Fernando R.L., Guldbrandtsen B., Totir L.R., Carriquiry A.L., Sampling genotypes in large pedigrees with loops, Genet. Sel. Evol. 33 (2001) 337-367.
  7. Fernando R.L., Stricker C., Elston R.C., The finite polygenic mixed model: an alternative formulation for the mixed model of inheritance, Theor. Appl. Genet. 88 (1994) 573-580.
  8. Geyer C.J., Thompson E.A., Annealing Markov chain Monte Carlo with applications to ancestral inference, J. Am. Stat. Assoc 90 (1995) 909-920.
  9. Guo S.W., Thompson E.A., A Monte Carlo method for combined segregation and linkage analysis, Am. J. Hum. Genet. 51 (1992) 1111-1126.
  10. Hasstedt S.J., A mixed model approximation for large pedigrees, Comput. Biomed. Res. 15 (1982) 195-307.
  11. Hasstedt S.J., A variance components/major locus likelihood approximation on quantitative data, Genet. Epidemiol. 8 (1991) 113-125.
  12. Hastings W.K., Monte Carlo sampling methods using Markov chains and their applications, Biometrika 57 (1970) 97-109.
  13. Heath S.C., Markov Chain Monte Carlo segregation and linkage analysis for oligogenic models, Am. J. Hum. Genet. 61 (1997) 748-760.
  14. Heath S.C., Generating consistent genotypic configurations for multi-allelic loci and large complex pedigrees, Hum. Hered. 48 (1998) 1-11.
  15. Janss L.L.G., Thompson R., Van Arendonk J.A.M., Application of Gibbs sampling for inference in a mixed major gene-polygenic inheritance model in animal populations, Theor. Appl. Genet. 91 (1995) 1137-1147.
  16. Jensen C.S., Kong A., Blocking Gibbs sampling for linkage analysis in large pedigrees with many loops, Am. J. Hum. Genet. 65 (1999) 885-901.
  17. Jensen C.S., Kong A., Kjærulff U., Blocking Gibbs sampling in very large probabilistic expert systems, Int. J. Hum. Comp. Stud. 42 (1995) 647-66.
  18. Lange K., Boehnke M., Extensions to pedigree analysis. V. Optimal calculation of Mendelian likelihoods, Hum. Hered. 33 (1983) 291-301.
  19. Lange K., Goradia T.M., An algorithm for automatic genotype elimination, Am. J. Hum. Genet. 40 (1987) 250-256.
  20. LeRoy P., Elsen J.M., Knott S., Comparison of four statistical methods for detection of a major gene in a progeny test design, Genet. Sel. Evol. 21 (1989) 341-357.
  21. Lin S., A scheme for constructing an irreducible Markov chain for pedigree data, Biometrics 51 (1995) 318-322.
  22. Lin S., Thompson E., Wijsman E., Achieving irreducibility of the Markov chain Monte Carlo method applied to pedigree data, IMA J. Math. Appl. Med. Biol. 10 (1993) 1-17.
  23. Metropolis N., Rosenbluth A.W., Rosenbluth M.N., Teller A.H., Teller E., Equation of state calculation by fast computing machines, J. Chem. Phys. 21 (1953) 1087-1092.
  24. Sheehan N., Thomas A., On the irreducibility of a Markov Chain defined on a space of genotype configurations by a sampling scheme, Biometrics 49 (1993) 163-175.
  25. Sobel E., Lange K., Descent graphs in pedigree analysis: Applications to haplotyping location scores, and marker-sharing statistics, Am. J. Hum. Genet. 58 (1996) 1323-1337.
  26. Stricker C., Fernando R.L., Elston R.C., SALP -- segregation and linkage analysis for pedigrees, in: Proc. 5th World Cong. Genet. Appl. Livest. Prod., Guelph, August 7-12, 1994a, University of Guelph.
  27. Stricker C., Fernando R.L., Elston R.C., SALP -- segregation and linkage analysis for pedigrees, release 2.0, computer program package, 1994b.
  28. Stricker C., Fernando R.L., Elston R.C., Linkage analysis with an alternative formulation for the mixed model of inheritance: The finite polygenic mixed model, Genetics 141 (1996) 1651-1656.
  29. Stricker C., Fernando R.L., Eltson R.C., An algorithm to approximate the likelihood for pedigree data with loops by cutting, Theor. Appl. Genet. 91 (1995) 1054-1063.
  30. Thomas A., Approximate computation of probability functions for pedigree analysis, IMJ J. Math. Appl. Med. Biol. 3 (1986) 157-166.
  31. Thomas D., Cortessis V., A Gibbs sampling approach to linkage analysis, Hum. Hered. 42 (1992) 63-76.
  32. Thompson E.A., Monte Carlo estimation of multilocus autozygosity probabilities, in: Sall J., Lehman A. (Eds.), Proceedings of the 1994 Interface Conference, Interface Foundation of North America: fairfax, Station, VA, 1994, pp. 498-506.
  33. Uimari P., Thaller G., Hoeschele I., The use of multiple markers in Bayesian methods for mapping quantitative trait loci, Genetics 143 (1996) 1831-1842.
  34. Wang T., Fernando R.L., Stricker C., Elston R.C., An approximation to the likelihood for a pedigree with loops, Theor. Appl. Genet. 93 (1996) 1299-1309.

Abstract

Copyright INRA, EDP Sciences