Free Access
Issue
Genet. Sel. Evol.
Volume 34, Number 5, September-October 2002
Page(s) 635 - 648
DOI https://doi.org/10.1051/gse:2002028

References

  1. Bandelt H.-J., Macaulay V., Richards M., Median Networks: Speedy construction and greedy reduction. One simulation and two case studies from human mtDNA, Mol. Phylogenet. Evol. 16 (2000) 8-28.
  2. Bowling A.T., Del Valle A., Bowling M., A pedigree-based study of mitochondrial D-loop DNA sequence variation among Arabian horses, Anim. Genet. 31 (2000) 1-7.
  3. Clutton-Brock J., A natural history of domesticated mammals, 2nd ed., Cambridge University Press, Cambridge, New York, Melbourne, 1999.
  4. Felsenstein J., PHYLIP (Phylogeny Inference Package) version 3.5c., University of Washington, Department of Genetics, Seattle, 1993.
  5. Ishida N., Hasegawa T., Takeda K., Sakagami M., Onishi A., Inumaru S., Komatsu M., Mukoyama H., Polymorphic sequence in the D-loop region of equine mitochondrial DNA, Anim. Genet. 25 (1994) 215-221.
  6. Ishida N., Oyunsuren T., Mashima S., Mukoyama H., Saitou N., Mitochondrial DNA Sequences of Various Species of the Genus Equus with Special Reference to the Phylogenetic Relationship Between Przewalskii's Wild Horse and Domestic Horse, J. Mol. Evol. 41 (1995) 180-188.
  7. Kavar T., Habe F., Brem G., Dovc P., Mitochondrial D-loop sequence variation among the 16 maternal lines of the Lipizzan horse breed, Anim. Genet. 30 (1999) 423-430.
  8. Kim K.I., Yang Y.H., Lee S.S., Park C.K., Ma R., Lewin H.A., Phylogenetic relationships of Cheju horses to other horse breeds as determined by mtDNA D-loop sequence polymorphism, Anim. Genet. 30 (1999) 102-108.
  9. Kimura M., A simple model for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences, J. Mol. Evol. 16 (1980) 111-120.
  10. Lister A.M., Kadwell M., Kaagan L.M., Jordan W.C., Richards M.B., Stanley H.E., Ancient and modern DNA in a study of horse domestication, Ancient Biomolecules 2 (1998) 267-280.
  11. MacFadden B.J., Fossil horses: systematics, paleobiology, and evolution of the family Equidae, Cambridge University Press, Cambridge, 1992.
  12. Nürnberg H., Der Lipizzaner: mit einem Anhang über den Kladruber, Westarp Wissenschaften, Magdenburg, 1993.
  13. Oakenfull E.A., Ryder O.A., Mitochondrial control region and 12S rRNA variation in Przewalski's horse (Equus przewalskii), Anim. Genet. 29 (1998) 456-459.
  14. Page R.D.M., Treeview (Win32), University of Glasgow, Division of Environmental and Evolutionary biology, Institute of Biomedical and Life Sciences, Glasgow, 1998.
  15. Saitou N., Nei M., The Neighbor-joining method: A new method for reconstructing phylogenetic trees, Mol. Biol. Evol. 4 (1987) 406-425.
  16. Thompson J.D., Higgins D.G., Gibson T.J., CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Res. 22 (1994) 4673-4680.
  17. Vila C., Leonard J.A, Gotherstrom A., Marklund S., Sandberg K., Liden K., Wayne R.K., Ellegren H., Widespread origins of domestic horse lineages, Science 291 (2001) 474-477.
  18. White P.S., Densmore L.D., Mitochondrial DNA isolation, in: Hoelzel A.R. (Ed.), Molecular genetic analysis of populations. A practical approach, Oxford University Press, Oxford, 1992, pp. 37-43.
  19. Xu X., Arnason U., The complete mitochondrial DNA sequence of the horse, Equus caballus: extensive heteroplasmy of the control region, Gene 148 (1994) 357-362.

Abstract

Copyright INRA, EDP Sciences