Free Access
Genet. Sel. Evol.
Volume 34, Number 6, November-December 2002
Page(s) 657 - 678


  1. Abdel-Aziz G., Freeman A.E., A rapid method for computing the inverse of the gametic covariance relationship matrix between relatives for a marked quantitative trait locus, Genet. Sel. Evol. 33 (2001) 153-173.
  2. Almasy L., Blangero J., Multipoint quantitative-trait linkage analysis in general pedigrees, Am. J. Hum. Genet. 62 (1998) 1198-1211.
  3. Van Arendonk J.A.M., Tier B., Kinghorn B.P., Use of multiple genetic markers in prediction of breeding values, Genetics 137 (1994) 319-329.
  4. Bink M.C.A.M., Janss L.L.G., Quaas R.L., Markov Chain Monte Carlo for mapping a quantitative trait locus in outbred populations, Genet. Res. 75 (2000) 231-241.
  5. Brunk H.D., An introduction to mathematical statistics, Third edn., Xerox College Publishing, Lexington, MA, USA, 1975.
  6. Cockerham C.C., Genetic covariation among characteristics of swine, Ph.D. thesis, Iowa State College, Ames, IA, USA, 1952.
  7. Cockerham C.C., An extension of the concept of partitioning hereditary variance for analysis of covariances among relatives when epistasis is present, Genetics 39 (1954) 859-882.
  8. Cockerham C.C., Effects of linkage on the covariances between relatives, Genetics 41 (1956) 138-141.
  9. Crow J.F., Kimura M., An introduction to population genetics theory, Happer & Row, New York, 1970.
  10. Falconer D.S., Mackay T.F., Introduction to quantitative genetics, Fourth edn., Longman, UK, 1996.
  11. Fernando R.L., Grossman M., Marker assisted selection using best linear unbiased prediction, Genet. Sel. Evol. 21 (1989) 467-477.
  12. Fisher R.A., The correlation between relatives on the supposition of Mendelian inheritance, Trans Royal Soc. Edinburgh 52 (1918) 399-433.
  13. Fulker D.W., Cardon L.R., A sib-pair approach of interval mapping of quantitative trait loci, Am. J. Hum. Genet. 54 (1994) 1092-1103.
  14. Fulker D.W., Cherny S.S., Cardon L.R., Multipoint interval mapping of quantitative trait loci, using sib pairs, Am. J. Hum. Genet. 56 (1995) 1224-1233.
  15. George A.W., Visscher R.M., Haley C.S., Mapping quantitative trait loci in complex pedigree: A two-step variance component approach, Genetics 156 (2000) 2081-2092.
  16. Goddard M.E., A mixed model for analyses of data on multiple genetic markers, Theor. Appl. Genet. 83 (1992) 878-886.
  17. Grignola F.E., Hoeschele I., Tier B., Mapping quantitative loci in outcross populations via residual maximum likelihhod. I. Methodology, Genet. Sel. Evol. 28 (1996) 479-490.
  18. Haseman J.K., Elston R.C., The investigation of linkage between a quantitative trait and a marker locus, Behav. Genet. 2 (1972) 3-19.
  19. Henderson C.R., A general method for computing the inverse of a numerator relationship matrix used in prediction of breeding values, Biometrics 32 (1976) 69-83.
  20. Keller G., Warrack B., Bartel H., Statistics for management and economics, Wadsworth Publishing Company, Belmont, CA, USA, 1988.
  21. Kempthore O., The correlation between relatives in a random mating populations, Proc. Royal Soc. London B 143 (1954) 103-113.
  22. Kempthore O., The theoretical values of correlations between relatives in random mating populations, Genetics 40 (1955) 153-167.
  23. Kempthore O., The correlations between relatives in random mating populations, Cold Spring Harbor Symposia on Quantitative Biology, Vol. XX, 1955, pp. 60-78.
  24. Kempthore O., The correlations between relatives in inbred populations, Genetics 40 (1955) 681-691.
  25. Kempthore O., The correlations between relatives in a simple autotetroploid population, Genetics 40 (1955) 168-174.
  26. Kruglyak L., Lander E.S., Complete multipoint sib-pair analysis of qualitative and quantitative traits, Am. J. Hum. Genet. 57 (1995) 439-545.
  27. Malecot G., Les mathématiques de l'hérédité, Masson et Cie, Paris, 1948.
  28. Meuwissen T.H.E., Goddard M.E., Prediction of identity by descent probabilities from marker-haplotypes, Genet. Sel. Evol. 33 (2001) 605-634.
  29. Pearson K., On a generalized theory of alternative inheritance with special reference to Mendel's laws, Phil. Trans. Royal. Soc. A 203 (1904) 53-86.
  30. Perez-Enciso M., Varona L., Rothschild M.F., Computation of identity by descent probabilities conditional on DNA markers via a Monte Carlo Markov Chain method, Genet. Sel. Evol. 32 (2000) 467-482.
  31. Plum M., Computation of inbreeding and relationship coefficients, J. Hered. 45 (1954) 92-94.
  32. Pong-Wong R., George A.W., Woolliams J.A., Haley C.S., A simple and rapid method for calculating identity-by-descent matrices using multiple markers, Genet. Sel. Evol. 33 (2001) 453-471.
  33. Thompson E.A., Monte Carlo estimation of multilocus autozygosity probabilities, Proceeding of the 1994 Interface Conference, Fairfax Station, VA, USA, 1994, pp. 498-506.
  34. Thompson E.A., Heath C., Estimation of conditional multilocus gene identity among relatives, in: Seillier-Moseiwitch F. (Ed.), Statistics in Molecular Biology and Genetics, Verlager-Verlage IMS lecture note series, New York, 1999, pp. 95-113.
  35. Wang T., Fernando R.L., Van Der Beek S., Grossman M., Van Arendonk J.A.M., Covariance between relatives for a marked quantitative trait locus, Genet. Sel. Evol. 27 (1995) 251-272.
  36. Weinberg W., Uber Vererbungsgesetze beim Menschen, Zeit. Ind. Abst. Ver I (1909) 377-392, 440-460; II (1909) 276-330.
  37. Weir B.S., Cockerham C.C., Reynolds J., The effects of linkage and linkage disequilibrium on the covariances of noninbred relatives, Heredity 45 (1980) 351-359.
  38. Xu S., Gessler D.D.G., Multipoint genetic mapping of quantitative trait loci using variable number of sibs per family, Genet. Res. 71 (1998) 73-83.


Copyright INRA, EDP Sciences