Free Access
Issue |
Genet. Sel. Evol.
Volume 34, Number 6, November-December 2002
|
|
---|---|---|
Page(s) | 657 - 678 | |
DOI | https://doi.org/10.1051/gse:2002030 |
References
- Abdel-Aziz G., Freeman A.E., A rapid method for computing the inverse of the gametic covariance relationship matrix between relatives for a marked quantitative trait locus, Genet. Sel. Evol. 33 (2001) 153-173.
- Almasy L., Blangero J., Multipoint quantitative-trait linkage analysis in general pedigrees, Am. J. Hum. Genet. 62 (1998) 1198-1211.
- Van Arendonk J.A.M., Tier B., Kinghorn B.P., Use of multiple genetic markers in prediction of breeding values, Genetics 137 (1994) 319-329.
- Bink M.C.A.M., Janss L.L.G., Quaas R.L., Markov Chain Monte Carlo for mapping a quantitative trait locus in outbred populations, Genet. Res. 75 (2000) 231-241.
- Brunk H.D., An introduction to mathematical statistics, Third edn., Xerox College Publishing, Lexington, MA, USA, 1975.
- Cockerham C.C., Genetic covariation among characteristics of swine, Ph.D. thesis, Iowa State College, Ames, IA, USA, 1952.
- Cockerham C.C., An extension of the concept of partitioning hereditary variance for analysis of covariances among relatives when epistasis is present, Genetics 39 (1954) 859-882.
- Cockerham C.C., Effects of linkage on the covariances between relatives, Genetics 41 (1956) 138-141.
- Crow J.F., Kimura M., An introduction to population genetics theory, Happer & Row, New York, 1970.
- Falconer D.S., Mackay T.F., Introduction to quantitative genetics, Fourth edn., Longman, UK, 1996.
- Fernando R.L., Grossman M., Marker assisted selection using best linear unbiased prediction, Genet. Sel. Evol. 21 (1989) 467-477.
- Fisher R.A., The correlation between relatives on the supposition of Mendelian inheritance, Trans Royal Soc. Edinburgh 52 (1918) 399-433.
- Fulker D.W., Cardon L.R., A sib-pair approach of interval mapping of quantitative trait loci, Am. J. Hum. Genet. 54 (1994) 1092-1103.
- Fulker D.W., Cherny S.S., Cardon L.R., Multipoint interval mapping of quantitative trait loci, using sib pairs, Am. J. Hum. Genet. 56 (1995) 1224-1233.
- George A.W., Visscher R.M., Haley C.S., Mapping quantitative trait loci in complex pedigree: A two-step variance component approach, Genetics 156 (2000) 2081-2092.
- Goddard M.E., A mixed model for analyses of data on multiple genetic markers, Theor. Appl. Genet. 83 (1992) 878-886.
- Grignola F.E., Hoeschele I., Tier B., Mapping quantitative loci in outcross populations via residual maximum likelihhod. I. Methodology, Genet. Sel. Evol. 28 (1996) 479-490.
- Haseman J.K., Elston R.C., The investigation of linkage between a quantitative trait and a marker locus, Behav. Genet. 2 (1972) 3-19.
- Henderson C.R., A general method for computing the inverse of a numerator relationship matrix used in prediction of breeding values, Biometrics 32 (1976) 69-83.
- Keller G., Warrack B., Bartel H., Statistics for management and economics, Wadsworth Publishing Company, Belmont, CA, USA, 1988.
- Kempthore O., The correlation between relatives in a random mating populations, Proc. Royal Soc. London B 143 (1954) 103-113.
- Kempthore O., The theoretical values of correlations between relatives in random mating populations, Genetics 40 (1955) 153-167.
- Kempthore O., The correlations between relatives in random mating populations, Cold Spring Harbor Symposia on Quantitative Biology, Vol. XX, 1955, pp. 60-78.
- Kempthore O., The correlations between relatives in inbred populations, Genetics 40 (1955) 681-691.
- Kempthore O., The correlations between relatives in a simple autotetroploid population, Genetics 40 (1955) 168-174.
- Kruglyak L., Lander E.S., Complete multipoint sib-pair analysis of qualitative and quantitative traits, Am. J. Hum. Genet. 57 (1995) 439-545.
- Malecot G., Les mathématiques de l'hérédité, Masson et Cie, Paris, 1948.
- Meuwissen T.H.E., Goddard M.E., Prediction of identity by descent probabilities from marker-haplotypes, Genet. Sel. Evol. 33 (2001) 605-634.
- Pearson K., On a generalized theory of alternative inheritance with special reference to Mendel's laws, Phil. Trans. Royal. Soc. A 203 (1904) 53-86.
- Perez-Enciso M., Varona L., Rothschild M.F., Computation of identity by descent probabilities conditional on DNA markers via a Monte Carlo Markov Chain method, Genet. Sel. Evol. 32 (2000) 467-482.
- Plum M., Computation of inbreeding and relationship coefficients, J. Hered. 45 (1954) 92-94.
- Pong-Wong R., George A.W., Woolliams J.A., Haley C.S., A simple and rapid method for calculating identity-by-descent matrices using multiple markers, Genet. Sel. Evol. 33 (2001) 453-471.
- Thompson E.A., Monte Carlo estimation of multilocus autozygosity probabilities, Proceeding of the 1994 Interface Conference, Fairfax Station, VA, USA, 1994, pp. 498-506.
- Thompson E.A., Heath C., Estimation of conditional multilocus gene identity among relatives, in: Seillier-Moseiwitch F. (Ed.), Statistics in Molecular Biology and Genetics, Verlager-Verlage IMS lecture note series, New York, 1999, pp. 95-113.
- Wang T., Fernando R.L., Van Der Beek S., Grossman M., Van Arendonk J.A.M., Covariance between relatives for a marked quantitative trait locus, Genet. Sel. Evol. 27 (1995) 251-272.
- Weinberg W., Uber Vererbungsgesetze beim Menschen, Zeit. Ind. Abst. Ver I (1909) 377-392, 440-460; II (1909) 276-330.
- Weir B.S., Cockerham C.C., Reynolds J., The effects of linkage and linkage disequilibrium on the covariances of noninbred relatives, Heredity 45 (1980) 351-359.
- Xu S., Gessler D.D.G., Multipoint genetic mapping of quantitative trait loci using variable number of sibs per family, Genet. Res. 71 (1998) 73-83.
Abstract
Copyright INRA, EDP Sciences