Free Access
Issue
Genet. Sel. Evol.
Volume 35, Number 6, November-December 2003
Page(s) 585 - 604
DOI https://doi.org/10.1051/gse:2003041
References of  Genet. Sel. Evol. 35 (2003) 585-604
  1. Bink M.C.A.M., van Arendonk J.A.M., Quaas R.L., Breeding value estimation with incomplete marker data, Genet. Sel. Evol. 30 (1998) 45-58.
  2. Bonney G.E., On the statistical determination of major gene mechanisms in continuous human traits: regressive models, Am. J. Med. Genet. 18 (1984) 731-749  [PUBMED link].
  3. Brooks S.P., Gelman A., General methods for monitoring convergence of iterative simulations, Comp. Graph. Stat. 7 (1998) 434-455.
  4. Bulmer M.G., The mathematical theory of quantitative genetics, Clarendon Press, Oxford, 1980.
  5. Cannings C., Thompson E.A., Skolnick M.H., Probability functions on complex pedigrees, Adv. Appl. Prob. 10 (1978) 26-61.
  6. Culbertson M.S., Mabry J.W., Misztal I., Gengler N., Bertrand J.K., Varona L., Estimation of dominance variance in purebred yorkshire swine, J. Anim. Sci. 76 (1998) 448-451  [PUBMED link].
  7. DeBoer I.J.M., Hoeschele I., Genetic evaluation methods for populations with dominance and inbreeding, Theor. Appl. Genet. 86 (1993) 245-258.
  8. Du F.X., Hoeschele I., Estimation of additive, dominance and epistatic variance components using finite locus models implemented with a single-site gibbs and a descent graph sampler, Genet. Res. 76 (2000) 187-198  [CROSSREF link].
  9. Elston R.C., Stewart J., A general model for the genetic analysis of pedigree data, Hum. Hered. 21 (1971) 523-542  [PUBMED link].
  10. Falconer D.S., Mackay T.F.C., Introduction to quantitative genetics, Longman, Inc., New York, 4th edn., 1996.
  11. Fernandez S.A., Fernando R.L., Gulbrandtsen B., Totir L.R., Carriquiry A.L., Sampling genotypes in large pedigrees with loops, Genet. Sel. Evol. 33 (2001) 337-367  [EDPS link].
  12. Fernando R.L., Theory for analysis of multi-breed data, in: Proceedings for the 7th Genetic Prediction Workshop, 1999, Kansas City, MO, USA, pp. 1-16.
  13. Fernando R.L., Gianola D., Optimal properties of the conditional mean as a selection criterion, Theor. Appl. Genet. 72 (1986) 822-825.
  14. Fernando R.L., Grossman M., Genetic evaluation in crossbred populations, in: Proc. Forty-Fifth Annu. Natl. Breeders Roundtable, Poult. Breeders Am. and US Poult. Egg Assoc., 1996, Tucker, GA, pp. 19-28.
  15. Fernando R.L., Stricker C., Elston R.C., An efficient algorithm to compute the posterior genotypic distribution for every member of a pedigree without loops, Theor. Appl. Genet. 87 (1993) 89-93.
  16. Fernando R.L., Stricker C., Elston R.C., The finite polygenic mixed model: An alternative formulation for the mixed model of inheritance, Theor. Appl. Genet. 88 (1994) 573-580.
  17. Gianola D., Fernando R.L., Bayesian methods in animal breeding, J. Anim. Sci. 63 (1986) 217-244.
  18. Gilks W.R., Richardson S., Spiegelhalter D.J., Introducing Markov chain Monte Carlo, in: Gilks W.R., Richardson S., Spiegelhalter D.J. (Eds.), Markov chain Monte Carlo in practice, 1996, 2-6 Boundry Row, London SE1 8HN, Chapman & Hall, pp. 1-16.
  19. Goddard M.E., Gene based models for genetic evaluation - an alternative to blup?, in: Proceedings of the 6th World Congress on Genetics Applied to Livestock Production, Armidale, 11-16 January 1998, Vol. 26, University of New England, Armidale, pp. 33-36.
  20. Heath S.C., Markov chain Monte Carlo segregation and linkage analysis for oligogenic models, Am. J. Hum. Genet. 61 (1997) 748-760  [PUBMED link].
  21. Janss L.L.G., Thompson R., van Arendonk J.A.M., Applications of Gibbs sampling for inference in a mixed major gene-polygenic inheritance model in animal populations, Theor. Appl. Genet. 91 (1995) 1137-1147.
  22. Jensen C.S., Kong A., Kjærulff U., Blocking Gibbs sampling in very large probabilistic expert systems, Int. J. Hum. Comp. Stud. 42 (1995) 647-666.
  23. Meuwissen T.H.E., Goddard M.E., The use of marker haplotypes in animal breeding schemes, Genet. Sel. Evol. 28 (1996) 161-176.
  24. Perez-Enciso M., Varona L., Rothschild M.F., Computation of identity by descent probabilities conditional on DNA markers via Monte Carlo Markov chain method, Genet. Sel. Evol. 32 (2000) 467-482  [EDPS link].
  25. Perez-Enciso M., Fernando R.L., Bidanel J.P., Le Roy P., Quantitative trait locus analysis in crosses between outbred lines with dominance and inbreeding, Genetics 159 (2001) 413-422  [PUBMED link].
  26. Ramsey F.L., Schafer D.W., The statistical sleuth a course in methods of data analysis, Duxbury Press, 1st edn., 1997.
  27. Smith C., Improvement of metric traits through specific genetic loci, Anim. Prod. 9 (1967) 349-358.
  28. Stricker C., Fernando R.L., Some theoretical aspects of finite locus models, in: Proceedings of the 6th World Congress on Genetics Applied to Livestock Production, Armidale, 11-16 January 1998, Vol. 26, University of New England, Armidale, pp. 25-32.
  29. Thompson E.A., Heath S.C., Estimation of conditional multilocus gene identity among relatives, in: Statistics in Molecular Biology, IMS Lecture Notes - Monograph Series, Vol. 33, 1999, pp. 95-113.
  30. Totir L.R., Fernando R.L., Fernandez S.A., The effect of the number of loci on genetic evaluations in finite locus models, J. Anim. Sci. 79 (Suppl. 1) (2001) 191.
  31. Totir L.R., Genetic evaluation with finite locus models, Ph.D. thesis, Iowa State University, 2002.
  32. van Arendonk J.A.M., Smith C., Kennedy B.W., Method to estimate genotype probabilities at individual loci farm livestock, Theor. Appl. Genet. 78 (1989) 735-740.
  33. Wang T., Fernando R.L., Stricker C., Elston R.C., An approximation to the likelihood for a pedigree with loops, Theor. Appl. Genet. 93 (1996) 1299-1309  [CROSSREF link].