Free Access
Genet. Sel. Evol.
Volume 36, Number 4, July-August 2004
Page(s) 455 - 479
References of  Genet. Sel. Evol. 36 (2004) 455-479
  1. Akaike H., A new look at the statistical model identification, IEEE Trans. Automat. Control 19 (1974) 716-723 [CrossRef] [MathSciNet].
  2. Basten C.J., Weir B.S., Zeng Z.-B., QTL Cartographer, A reference manual and tutorial for QTL mapping, Program in Statistical Genetics, North Carolina State University, Raleigh, USA, 2001.
  3. Carlborg Ö., Andersson L., Kinghorn B., The use of a genetic algorithm for simultaneous mapping of multiple interacting quantitative trait loci, Genetics 155 (2000) 2003-2010 [PubMed].
  4. Casella G., Berger R.L., Statistical Inference, Pacific Grove California: Brooks/Cole, 1990.
  5. Cockerham C.C., An extension of the concept of partitioning hereditary variance for analysis of covariances among relatives when epistasis is present, Genetics 39 (1954) 859-882.
  6. Darvasi A., Soller M., A simple method to calculate resolving power and confidence intervals of QTL map location, Behav. Genet. 27 (1997) 125-132 [CrossRef] [PubMed].
  7. Darvasi A., Weinreb A., Minke V., Weller J.I., Soller M., Detecting marker-QTL linkage and estimating QTL gene effect and map location using a saturated genetic map, Genetics 134 (1993) 943-951 [PubMed].
  8. Dempster A.P., Laird N.M., Rubin D.B., Maximum likelihood from incomplete data via the EM algorithm, J. Royal Stat. Soc. 39 (1977) 1-38.
  9. Dupuis J., Siegmund D., Statistical methods for mapping quantitative trait loci from a dense set of markers, Genetics 151 (1999) 373-386 [PubMed].
  10. Haley C.S., Knott S.A., A simple regression method for mapping quantitative trait in line crosses using flanking markers, Heredity 69 (1992) 315-324.
  11. Jansen R.C., Interval mapping of multiple quantitative trait loci, Genetics 135 (1993) 205-211 [PubMed].
  12. Kao C.-H., On the differences between maximum likelihood and regression interval mapping in the analysis of quantitative trait loci, Genetics 156 (2000) 855-865 [PubMed].
  13. Kao C.-H., Zeng Z.-B., General formulas for obtaining the MLEs and the asymptotic variance-covariance matrix in mapping quantitative trait loci when using the EM algorithm, Biometrics 53 (1997) 653-665 [PubMed].
  14. Kao C.-H., Zeng Z.-B., Teasdale R.D., Multiple interval mapping for quantitative trait loci, Genetics 152 (1999) 1203-1216 [PubMed].
  15. Lander E.S., Botstein D., Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps, Genetics 121 (1989) 185-199 [PubMed].
  16. Lander E.S., Kruglyak V., Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results, Nat. Genet. 11 (1995) 241-247 [PubMed].
  17. Lebreton C.M., Visscher P.M., Empirical nonparametric bootstrap strategies in quantitative trait loci mapping: conditioning on the genetic model, Genetics 148 (1998) 525-535 [PubMed].
  18. Little R.J.A., Rubin D.B., Statistical analysis with missing data, John Wiley, New York, 1987.
  19. Liu Y., Zeng Z.-B., A general mixture model approach for mapping quantitative trait loci from diverse cross designs involving multiple inbred lines, Genet. Res. Camb. 75 (2000) 345-355.
  20. Louis T.A., Finding the observed information matrix when using the EM algorithm, J. Royal Stat. Soc., Series B 44 (1982) 226-233.
  21. Mangin B., Goffinet B., Rebai A., Constructing confidence intervals for QTL location, Genetics 138 (1994) 1301-1308 [PubMed].
  22. Nakamichi R., Ukai Y., Kishino H., Detection of closely linked multiple quantitative trait loci using a genetic algorithm, Genetics 158 (2001) 463-475 [PubMed].
  23. Openshaw S., Frascaroli E., QTL detection and marker-assisted selection for complex traits in maize, in: 52nd Annual Corn and Sorghum Industry Research Conference, ASTA, Washington, DC (1997) pp. 44-53.
  24. Piepho H.P., Optimal marker density for interval mapping in a backcross population, Heredity 84 (2000) 437-440 [CrossRef] [PubMed].
  25. Schwarz G., Estimating the dimension of a model, Ann. Stat. 6 (1978) 461-464 [MathSciNet].
  26. Seaton G., Haley C., Knott S., Kearsey M., Visscher P., QTL express,, 2002.
  27. Soller M., Genizi A., The efficiency of experimental designs for the detection of linkage between a marker locus and a locus affecting a quantitative trait in segregating populations, Biometrics 34 (1978) 47-55.
  28. Visscher P.M., Thompson R., Haley C.S., Confidence intervals in QTL mapping by bootstrapping, Genetics 143 (1996) 1013-1020 [PubMed].
  29. Wolfinger R.D., Gibson G., Wolfinger E.D., Bennett L., Hamadeh H., Bushel P., Afshari C., Paules R.S., Assessing gene significance from cDNA microarray expression data via mixed models, J. Comp. Biol. 8 (2001) 625-637.
  30. Zeng Z.-B., Theoretical basis for separation of multiple linked gene effects in mapping of quantitative trait loci, Proc. Natl. Acad. Sci. 90 (1993) 10972-10976.
  31. Zeng Z.-B., Precision mapping of quantitative trait loci, Genetics 136 (1994) 1457-1468 [PubMed].
  32. Zeng Z.-B., Kao C.-H., Basten C.J., Estimating the genetic architecture of quantitative traits, Genet. Res. Camb. 74 (1999) 279-289.