Free Access
Issue
Genet. Sel. Evol.
Volume 36, Number 4, July-August 2004
Page(s) 415 - 433
DOI https://doi.org/10.1051/gse:2004009
References of  Genet. Sel. Evol. 36 (2004) 415-433
  1. Carlborg Ö., Andersson L., Kinghorn B., The use of a genetic algorithm for simultaneous mapping of multiple interacting quantitative trait loci, Genetics 155 (2000) 2003-2010 [PubMed].
  2. Churchill G.A., Doerge R.W., Empirical threshold values for quantitative trait mapping, Genetics 138 (1994) 963-971 [PubMed].
  3. Cockerham C.C., An extension of the concept of partitioning hereditary variance for analysis of covariances among relatives when epistasis is present, Genetics 39 (1954) 859-882.
  4. Geman S., Geman D., Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images, IEEE Trans. Pattn. Anal. Mach. Intell. 6 (1984) 721-741.
  5. Green P.J., Reversible jump Markov chain Monte Carlo computation and Bayesian model determination, Biometrika 82 (1995) 711-732 [MathSciNet].
  6. Haley C.S., Knott S.A., A simple regression method for mapping quantitative trait loci in line crosses using flanking markers, Heredity 69 (1992) 315-324.
  7. Haley C.S., Knott S.A., Elsen J.M., Mapping quantitative trait loci in crosses between outbred lines using least squares, Genetics 136 (1994) 1195-1207 [PubMed].
  8. Hastings W.K., Monte Carlo sampling methods using Markov chains and their applications, Biometrika 57 (1970) 97-109.
  9. Heath S.C., Markov chain Monte Carlo segregation and linkage analysis for oligogenic models, Am. J. Hum. Genet. 61 (1997) 748-760 [PubMed].
  10. Jannink J., Jansen R., Mapping epistatic quantitative trait loci with one-dimensional genome searches, Genetics 157 (2001) 445-454 [PubMed].
  11. Jansen R.C., Interval mapping of multiple quantitative trait loci, Genetics 135 (1993) 205-211 [PubMed].
  12. Kao C.H., Zeng Z.B., Teasdale R.D., Multiple interval mapping for quantitative trait loci, Genetics 152 (1999) 1203-1216 [PubMed].
  13. Lander E.S., Botstein D., Mapping mendelian factors underlying quantitative traits using RFLP linkage maps, Genetics 121 (1989) 185-199 [PubMed].
  14. Li Z., Pinson S.R., Park W.D., Paterson A.H., Stansel J.W., Epistasis for three grain yield components in rice (Oryza sativa L.), Genetics 145 (1997) 453-465 [PubMed].
  15. Metropolis N., Rosenbluth A.W., Rosenbluth M.N., Teller A.H., Teller E., Equation of state calculations by fast computing machines, J. Chem. Phys. 21 (1953) 1087-1091.
  16. Pong-Wong R., George A.W., Woolliams J.A., Haley C.S., A simple and rapid method for calculating identity-by-descent matrices using multiple markers, Genet. Sel. Evol. 33 (2001) 453-471 [EDP Sciences] [CrossRef] [PubMed].
  17. Routman E.J., Cheverud J.M., Gene effects on a quantitative trait: two-locus epistatic effect measured at microsatellite markers and at estimated QTLs, Evolution 51 (1997) 1654-1662.
  18. Sillanpää M.J., Arjas E., Bayesian mapping of multiple quantitative trait loci from incomplete inbred line cross data, Genetics 148 (1998) 1373-1388 [PubMed].
  19. Sillanpää M.J., Arjas E., Bayesian mapping of multiple quantitative trait loci from incomplete outbred offspring data, Genetics 151 (1999) 1605-1619 [PubMed].
  20. Thaller G., Hoeschele I., A Monte Carlo method for Bayesian analysis of linkage between single markers and quantitative trait loci: I. Methodology, Theor. Appl. Genet. 93 (1996) 1161-1166 [CrossRef].
  21. Thaller G., Hoeschele I., A Monte Carlo method for Bayesian analysis of linkage between single markers and quantitative trait loci: II. A stimulation study, Theor. Appl. Genet. 93 (1996) 1167-1174 [CrossRef].
  22. Uimari P., Hoeschele I., Mapping-linked quantitative trait loci using Bayesian analysis and Markov chain Monte Carlo algorithms, Genetics 146 (1997) 735-743 [PubMed].
  23. van Wezel T., Stassen A.P., Moen C.J., Hart A.A., van del Valk M.A., Demant P., Gene interaction and single gene effects in colon tumour susceptibility in mice, Nat. Genet. 14 (1996) 468-470 [PubMed].
  24. Visscher P.M., Thompson R., Haley C.S., Confidence intervals in QTL mapping by bootstrapping, Genetics 143 (1996) 1013-1020 [PubMed].
  25. Wang D.L., Zhu J., Li Z.K., Paterson A.H., Mapping QTLs with epistatic effects and QTL$\times $environment interactions by mixed linear model approaches, Theor. Appl. Genet. 99 (1999) 1255-1264 [CrossRef].
  26. Yi N., Xu S., Bayesian mapping of quantitative trait loci under the identity-by-descent-based variance component model, Genetics 156 (2000) 411-422 [PubMed].
  27. Yi N., Xu S., Mapping quantitative trait loci with epistatic effects, Genet. Res. 79 (2002) 185-198 [CrossRef] [PubMed].
  28. Yi N., Xu S., Allison D.B., Bayesian model choice and search strategies for mapping interacting quantitative trait loci, Genetics 165 (2003) 867-883 [PubMed].
  29. Zeng Z.B., Precision mapping of quantitative trait loci, Genetics 136 (1994) 1457-1468 [PubMed].
  30. Zeng Z.B., Kao C.H., Basten C.J., Estimating the genetic architecture of quantitative traits, Genet. Res. 74 (1999) 279-289 [CrossRef] [PubMed].