Free Access
Genet. Sel. Evol.
Volume 37, Number 1, January-February 2005
Page(s) 1 - 30
References of  Genet. Sel. Evol. 37 (2005) 1-30
  1. Albuquerque L.G., Meyer K., Estimates of genetic covariance functions for growth assuming a parametric correlation structure for permanent environmental effects, CDROM Seventh World Congr. Genet. Appl. Livest. Prod., 2002, Communication No. 2-21.
  2. Bermejo J.L., Roehe R., Rave G., Kalm E., Comparison of linear and nonlinear functions and covariance structures to estimate feed intake pattern in growing pigs, Livest. Prod. Sci. 82 (2003) 15-26 [CrossRef].
  3. Bryant E.H., Atchley W.R., Multivariate Statistical Methods: Within-Groups Covariation, Vol. 2 of Benchmark Papers in Systematic and Evolutionary Biology, Dowden, Hutchinson & Ross, Inc.; Halsted Press, Stroudsburg, PA, 1975.
  4. de Boor C., A Practical Guide to Splines, Vol. 27 of Springer Series in Applied Mathematics, Springer-Verlag, New York, 2nd edn., 2001.
  5. Diggle P.J., Liang K.Y., Zeger S.L., Analysis of Longitudinal Data, Oxford Science Publications, Clarendon Press, Oxford, 1994.
  6. Ducrocq V., Besbes B., Solution of multiple trait animal models with missing data on some traits, J. Anim. Breed. Genet. 110 (1993) 81-92.
  7. Ducrocq V., Chapuis H., Generalising the use of the canonical transformation for the solution of multivariate mixed model equations, Genet. Sel. Evol. 29 (1997) 205-224.
  8. Foulley J.L., Jaffrézic F., Robert-Granié C., EM-REML estimation of covariance parameters in Gaussian mixed models for longitudinal data analysis, Genet. Sel. Evol. 32 (2000) 129-141 [EDP Sciences] [CrossRef] [PubMed].
  9. Gilmour A.R., Thompson R., Cullis B.R., Average Information REML, an efficient algorithm for variance parameter estimation in linear mixed models, Biometrics 51 (1995) 1440-1450.
  10. Graser H.U., Smith S.P., Tier B., A derivative-free approach for estimating variance components in animal models by restricted maximum likelihood, J. Anim. Sci. 64 (1987) 1362-1370.
  11. Groeneveld E., A reparameterisation to improve numerical optimisation in multivariate REML (co)variance component estimation, Genet. Sel. Evol. 26 (1994) 537-545.
  12. Hayes J.F., Hill W.G., A reparameterisation of a genetic index to locate its sampling properties, Biometrics 36 (1980) 237-248 [PubMed] [MathSciNet].
  13. Hayes J.F., Hill W.G., Modifications of estimates of parameters in the construction of genetic selection indices (`bending'), Biometrics 37 (1981) 483-493 [MathSciNet].
  14. Henshall J.M., Meyer K., "PDMATRIX" - Programs to make matrices positive definite, CD-ROM Seventh World Congr. Genet. Appl. Livest. Prod., 2002, Communication No. 28-12.
  15. Hill W.G., Thompson R., Probabilities of non-positive definite between-group or genetic covariance matrices, Biometrics (1978) 429-439.
  16. Hofer A., Variance component estimation in animal breeding: a review, J. Anim. Breed. Genet. 115 (1998) 247-265.
  17. Hotelling H., Analysis of a complex of statistical variables into principal components, J. Educ. Psych. 24 (1933) 417-441.
  18. Jaffrézic F., White I.M.S., Thompson R., Visscher P.M., Contrasting models for lactation curve analysis, J. Dairy Sci. 84 (2002) 968-975.
  19. James G.M., Hastie T.J., Sugar C.A., Principal component models for sparse functional data, Biometrika 87 (2000) 587-602 [CrossRef] [MathSciNet].
  20. Jennrich R.I., Sampson P.F., Newton-Raphson and related algorithms for maximum likelihood variance component estimation, Technometrics 18 (1976) 11-17 [MathSciNet].
  21. Jennrich R.I., Schluchter M.D., Unbalanced repeated-measures models with structured covariance matrices, Biometrics 42 (1986) 805-820 [PubMed] [MathSciNet].
  22. Jensen J., Mäntysaari E.A., Madsen P., Thompson R., Residual maximum likelihood estimation of (co)variance components in multivariate mixed linear models using average information, J. Ind. Soc. Agr. Stat. 49 (1997) 215-225.
  23. Jensen J., Mao I.L., Transformation algorithms in analysis of single trait and multitrait models with equal design matrices and one random factor per trait: a review, J. Anim. Sci. 66 (1988) 2750-2761.
  24. Johnson D.L., Thompson R., Restricted maximum likelihood estimation of variance components for univariate animal models using sparse matrix techniques and average information, J. Dairy Sci. 78 (1995) 449-456.
  25. Joliffe I.T., Principal Component Analysis, Springer Series in Statistics, Springer-Verlag, New York, 1986.
  26. Juga J., Thompson R., A derivative-free algorithm to estimate bivariate (co)variance components using canonical transformations and estimated rotations, Acta Agric. Scand. A 42 (1992) 191-197.
  27. Kirkpatrick M., Selection on age dependent traits, CD-ROM Seventh World Congr. Genet. Appl. Livest. Prod., 2002, Communication No. 19-06.
  28. Kirkpatrick M., Lofsvold D., Measuring selection and constraint in the evolution of growth, Evolution 46 (1992) 954-971.
  29. Kirkpatrick M., Lofsvold D., Bulmer M., Analysis of the inheritance, selection and evolution of growth trajectories, Genetics 124 (1990) 979-993 [PubMed].
  30. Kirkpatrick M., Meyer K., Simplified analysis of complex phenotypes: Direct estimation of genetic principal components, Genetics 168 (2004) 2295-2306.
  31. Lin C.Y., Smith S.P., Transformation of multi-trait to unitrait mixed model analysis of data with multiple random effects, J. Dairy Sci. 73 (1990) 2494-2502 [PubMed].
  32. Lindsey J.K., Models for Repeated Measurements, Vol. 19, Oxford Statistical Science Series, Oxford University Press, 2nd edn., 1999.
  33. Lindstrom M.J., Bates D.M., Newton-Raphson and EM algorithms for linear mixed effects models for repeated-measures data, J. Amer. Stat. Ass. 83 (1988) 1014-1022 [MathSciNet].
  34. Mäntysaari E.A., Derivation of multiple trait reduced random regression (RR) model for the first lactation test day records of milk, protein and fat, in: 50th Annual Meeting, Europ. Ass. Anim. Prod., (1999) mimeo., 8p.
  35. Marquardt D.W., An algorithm for least squares estimation of nonlinear parameters, SIAM J. 11 (1963) 431-411.
  36. Meyer K., Maximum likelihood estimation of variance components for a multivariate mixed model with equal design matrices, Biometrics 41 (1985) 153-166 [PubMed] [MathSciNet].
  37. Meyer K., Estimating variances and covariances for multivariate animal models by restricted maximum likelihood, Genet. Sel. Evol. 23 (1991) 67-83.
  38. Meyer K., An "average information" restricted maximum likelihood algorithm for estimating reduced rank genetic covariance matrices or covariance functions for animal models with equal design matrices, Genet. Sel. Evol. 29 (1997) 97-116.
  39. Meyer K., Estimating covariance functions for longitudinal data using a random regression model, Genet. Sel. Evol. 30 (1998) 221-240.
  40. Meyer K., Estimating genetic covariance functions assuming a parametric correlation structure for environmental effects, Genet. Sel. Evol. 33 (2001) 557-585 [EDP Sciences] [CrossRef] [PubMed].
  41. Meyer K., Smith S.P., Restricted maximum likelihood estimation for animal models using derivatives of the likelihood, Genet. Sel. Evol. 28 (1996) 23-49.
  42. Misztal I., Strabel T., Jamrozik J., Mäntysaari E.A., Meuwissen T.H.E., Strategies for estimating the parameters needed for different test-day models, J. Dairy Sci. 83 (2000) 1125-1134 [PubMed].
  43. Nocedahl J., Wright S.J., Numerical Optimization, Springer Series in Operations Research, Springer-Verlag, New York, Berlin Heidelberg, 1999.
  44. Pearson K., On lines and planes of closest fit to systems of points in space, Phil. Mag. 2 (1901) 559-572.
  45. Pinheiro J.C., Bates D.M., Unconstrained parameterizations for variance-covariance matrices, Stat. Comp. 6 (1996) 289-296.
  46. Pletcher S.D., Geyer C.J., The genetic analysis of age-dependent traits: Modeling the character process, Genetics 153 (1999) 825-835 [PubMed].
  47. Rice J.A., Wu C.O., Nonparametric mixed effects models for unequally sampled noisy curves, Biometrics 57 (2001) 253-259 [CrossRef] [PubMed] [MathSciNet].
  48. Schaeffer L.R., Application of random regression models in animal breeding, Livest. Prod. Sci. 86 (2004) 35-45 [CrossRef].
  49. Smith A.B., Cullis B.R., Thompson R., Analysing variety by environment data using multiplicative mixed models and adjustments for spatial field trends, Biometrics 57 (2001) 1138-1147 [CrossRef] [PubMed] [MathSciNet].
  50. Smith S.P., Differentiation of the Cholesky algorithm, J. Comp. Graph. Stat. 4 (1995) 134-147.
  51. Thompson R., Cullis B.R., Smith A.B., Gilmour A.R., A sparse implementation of the Average Information algorithm for factor analytic and reduced rank variance models, Austr. New Zeal. J. Stat. 45 (2003) 445-459.
  52. Thompson R., Mäntysaari E.A., Prospects for statistical methods in dairy cattle breeding, Interbull Bull 20 (1999) 70-77.
  53. Torres R.A.A., Quaas R.L., Determination of covariance functions for lactation traits on dairy cattle using random-coefficient regressions on B-splines, J. Anim. Sci. 79 (2001) Suppl.1, 112, abstract.
  54. van der Werf J.H.J., Optimising selection for traits along trajectories, CD-ROM Seventh World Congr. Genet. Appl. Livest. Prod., 2002, Communication No. 16-07.
  55. Wiggans G.R., Goddard M.E., A computationally feasible test day model for genetic evaluation of yield traits in the United States, J. Dairy Sci. 80 (1997) 1795-1800 [PubMed].
  56. Wolfinger R.D., Covariance structure selection in general mixed models, Comm. Stat. - Simul. Comp. 22 (1993) 1079-1106.
  57. Wolfinger R.D., Heterogeneous variance-covariance structures for repeated measures data, J. Agric. Biol. Env. Stat. 1 (1996) 205-230 [MathSciNet].