Free Access
Issue
Genet. Sel. Evol.
Volume 37, Number 2, March-April 2005
Page(s) 129 - 150
DOI https://doi.org/10.1051/gse:2004041
References of  Genet. Sel. Evol. 37 (2005) 129-150
  1. Bourdon R.M., Understanding Animal Breeding, Prentice Hall, 2000, pp. 49-50.
  2. Bulmer M.G., The Mathematical Theory of Quantitative Genetics, Clarendon Press, Oxford, 1980.
  3. Carlborg O., Andersson L., Use of randomization testing to detect multiple epistatic QTLs, Genet. Res. 79 (2002) 175-184.
  4. Carlborg O., Haley C.S., Epistasis: too often neglected in complex trait studies? Nat. Rev. Genet. 5 (2004) 618-625.
  5. Cockerham C.C., An extension of the concept of partitioning hereditary variance for analysis of covariances among relatives when epistasis is present, Genetics 39 (1954) 859-882.
  6. Cordell H.J., Todd J.A., Hill N.J., Lord C.J., Lyons P.A., Peterson L.B., Wicker L.S., Clayton D.G., Statistical modeling of interlocus interactions in a complex disease: rejection of the multiplicative model of epistasis in type 1 diabetes, Genetics 158 (2001) 357-367.
  7. Darvasi A., Vinreb A., Minke V., Weller J.I., Soller M., Detecting marker-QTL linkage and estimating QTL gene effect and map location using a saturated genetic map, Genetics 134 (1993) 943-951.
  8. DeSalle R., Slightom J., Zimmer E., The molecular through ecological genetics of abnormal abdomen. II. Ribosomal DNA polymorphism is associated with the abnormal abdomen syndrome in drosophila mercatorum, Genetics 112 (1986) 861-875.
  9. Doebley J., Stec A., Gustus C., teosinte branched 1 and the origin of maize: evidence for epistasis and the evolution of dominance, Genetics 141 (1995) 333-346.
  10. El-Hazmi M.A., Warsy A.S., Al-Swailem A.R., Al-Faleh F.Z., Al-Jabbar F.A., Genetic compounds-Hb S, thalassaemias and enzymopathies: spectrum of interactions, J. Trop. Pediatr. 40 (1994) 149-156.
  11. Eshed Y., Zamir D., Less-than-additive epistatic interactions of quantitative trait loci in tomato, Genetics 143 (1996) 1807-1817.
  12. Fisher R.A., The correlation between relatives on the supposition of Mendelian inheritance, Trans. Roy. Soc. Edinburgh 52 (1918) 399-433.
  13. Henderson C.R., Application of linear models in animal breeding, University of Guelph, Ontario, 1984.
  14. Kao C.H., Zeng Z.B., Modeling epistasis of quantitative trait loci using Cockerham's model, Genetics 160 (2002) 1203-1216.
  15. Kempthrone O., The correlation between relatives in a random mating population, Proc. Roy. Soc. London B 143 (1954) 103-113.
  16. Lander E.S., Kruglyak L., Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results, Nature Genet. 11 (1995) 241-247.
  17. Lark K.G., Chase K., Adler F., Mansur L.I., Orf J.H., Interactions between quantitative trait loci in soybean in which trait variation at one locus is conditional upon a specific allele of another, Proc. Natl. Acad. Sci. USA 92 (1995) 4656-4660.
  18. Long C.R., Gregory K.E., Inheritance of the horned, scurred and polled condition in cattle, J. Hered. 69 (1978) 395-400.
  19. Lynch M., Walsh B., Genetics and Analysis of Quantitative Traits, Sinauer Associates, Sunderland, 1998.
  20. Pedersen J.C., Berg K., Interaction between low density lipoprotein receptor (LDLR) and apolipoprotein E (apoE) alleles contributes to normal variation in lipid level, Clin. Genet. 35 (1989) 331-337.
  21. Potts J.K., Echternkamp S.E., Smith T.P.L., Reecy J.M., Characterization of gene expression in double-muscled and normal-muscled bovine embryos, Anim. Genet. 34 (2003) 438-444.
  22. Routman E.J., Cheverud J.M., Genetic effects on a quantitative trait: two-locus epistatic effects measured at microsatellite markers and at estimated QTL, Evolution 51 (1997) 1654-1662.
  23. Wright S., On the genetics of silvering in the guinea pig with especial reference to interaction and linkage, Genetics 44 (1959) 387-405.
  24. Yi N., Xu S., Allison D.B., Bayesian model choice and search strategies for mapping interacting quantitative trait loci, Genetics 165 (2003) 867-883.