Free Access
Genet. Sel. Evol.
Volume 38, Number 3, May-June 2006
Page(s) 281 - 295
Published online 26 April 2006
References of  Genet. Sel. Evol. 38 (2006) 281-295
  1. Adaptive rejection sampling (to generate random variables) from log-concave density functions (42/1993) [consulted: 27 May 2005].
  2. Andersen P.K., Borgan Ø., Gill R.D., Keiding N., Statistical Models Based on Counting Processes, Springer, New York, 1992.
  3. Andersen A.H., Korsgaard I.R., Jensen J., Identifiability of parameters in - and equivalence of animal and sire models for Gaussian and Threshold characters, traits following a Poisson mixed model, and survival traits. Research Report 417 (2000), Department of Theoretical Statistics, University of Aarhus, Denmark.
  4. Damgaard L.H., Quantitative genetic analysis of survival, linear Gaussian and ordered categorical traits, Ph.D. thesis, 2004, The Royal Veterinary and Agricultural University, Frederiksberg C (Denmark).
  5. Diaz C., Chirinos Z., Moreno A., Carabaño M.J., Preliminary analysis of functional longevity in the Avileña Negra Ibérica beef cattle breed, in: Proceeding of the 7th World Congress on Genetics Applied to Livestock Production, 19-23 August 2002, Vol. 29, Montpellier (France) pp. 697-700.
  6. Ducrocq V., Casella G., A Bayesian analysis of mixed survival models, Genet. Sel. Evol. 28 (1996) 505-529.
  7. Ducrocq V., Sölkner J., The Survival Kit V3.0, a package for large analyses of survival data, in: Proceedings of the 6th World Congress on Genetics Applied to Livestock Production, 11-16 January 1998, Vol. 27, University of New England, Armidale, pp. 447-450.
  8. Estany J., Baselga M., Blasco A., Camacho J., Mixed model methodology for the estimation of genetic response to selection in litter size of rabbit, Livest. Prod. Sci. 21 (1989) 67-75 [CrossRef].
  9. Garreau H., Larzul C., Ducrocq V., Analyse de longévité de la souche de lapins INRA 1077, in: Proceedings of the 9$^{\rm e}$ Journ. Rech. Cunicole, 2001, Paris, France, pp. 217-220.
  10. Geman S., Geman D., Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images, IEEE T. Pattern Anal. 6 (1984) 721-741.
  11. Geweke J., Evaluating the accuracy of sampling-based approaches to calculating posterior moments, in: Bernardo J.M., Berger J.O., Dawid A.P., Smith A.F.M. (Eds.), Oxford University Press, Oxford, 1992.
  12. Gilks W.R., Wild P., Adaptative rejection sampling for Gibbs sampling, Appl. Stat. 41 (1992) 337-348.
  13. Korsgaard I.R., Madsen P., Jensen J., Bayesian Inference in the semiparametric log normal frailty model using Gibbs sampling, Genet. Sel. Evol. 30 (1998) 241-256.
  14. Korsgaard I.R., Andersen A.H., Jensen J., Prediction error variance and expected response to selection, when selection is based on the best predictor - for Gaussian and threshold characters, traits following a Poisson mixed model and survival traits, Genet. Sel. Evol. 34 (2002) 307-333 [EDP Sciences] [CrossRef] [PubMed].
  15. Ramón J., Rafel O., 1991-1992 - Diez años de gestión global en España, in: Proceeding of Expoaviga, X Jornada Cunícola, 2002, Barcelona, Spain, pp. 113-117.
  16. Rosell J.M., Health status of commercial rabbitries in the Iberian peninsula. A practitioner's study, World Rabbit Sci. 11 (2003) 157-169.
  17. Sánchez J.P., Baselga M., Peiró R., Silvestre M.A., Analysis of factors influencing longevity of rabbit does, Livest. Prod. Sci. 90 (2004) 227-234 [CrossRef].
  18. Yazdi M.H., Rydhmer L., Ringmar-Celerberg E., Lundeheim N., Genetic study of longevity in Swedish Landrace sows, Livest. Prod. Sci. 63 (2000) 255-264 [CrossRef].