Free Access
Genet. Sel. Evol.
Volume 38, Number 4, July-August 2006
Page(s) 389 - 409
Published online 23 June 2006
References of  Genet. Sel. Evol. 38 (2006) 389-409
  1. Archer J.A., Arthur P.F., Herd R.M., Parnell P.F., Pitchford W.S., Optimum postweaning test for measurement of growth rate, feed intake, and feed efficiency in British breed cattle, J. Anim. Sci. 75 (1997) 2024-2032 [PubMed].
  2. Arthur P.F., Archer J.A., Johnston D.J., Herd R.M., Richardson E.C., Parnell P.F., Genetic and phenotypic variance and covariance components for feed intake, feed efficiency, and other postweaning traits in Angus cattle, J. Anim. Sci. 79 (2001) 2805-2811 [PubMed].
  3. Becker W.A., Manual of Quantitative Genetics, Academic Enterprises, Pullman, 1985.
  4. Cammack K.M., Leymaster K.A., Jenkins T.G., Nielsen M.K., Estimates of genetic parameters for feed intake, feeding behavior, and daily gain in composite ram lambs, J. Anim. Sci. 83 (2005) 777-785 [PubMed].
  5. Chambers J.R., Wang L., McMillan I., Genetic variation of broiler feed consumption and efficiency corrected for differences in test body weights, Poultry Sci. 73 (1994) 1196-1203.
  6. Clutter A.C., Brascamp E.W., Genetics of performance traits, in: Rothschild M.F., Ruvinsky A. (Eds.), The Genetics of the Pig, CAB International, Wallingford, 1998, pp. 427-462.
  7. de la Higuera M., Effects of nutritional factors and feed characteristics on feed intake, in: Houlihan D., Boujard T., Jobling M. (Eds.), Food Intake in Fish, Blackwell, Oxford, 2001, pp. 250-268.
  8. Doupé R.G., Lymbery A.J., Indicators of genetic variation for feed conversion efficiency in black bream, Aquac. Res. 35 (2004) 1305-1309 [CrossRef].
  9. Falconer D.S., Mackay T.F.C., Introduction to Quantitative Genetics, Longman Group Ltd, Essex, 1996.
  10. Forseth T., Jonsson B., Næumann R., Ugedal O., Radioisotope method for estimating brown trout food consumption, Can. J. Fish. Aquat. Sci. 49 (1992) 1328-1335.
  11. François D., Bibé B., Brunel J.B., Weisbecker J.L., Ricard E., Genetic parameters of feeding traits in meat sheep, in: Proceedings of the 7th World Congress on Genetics Applied to Livestock Production, 19-23 August 2002, Montpellier, France, CD-ROM Communication No. 10-10.
  12. Grayton R.D., Beamish F.W.H., Effects of feeding frequency on food intake, growth and body composition of rainbow trout (Salmo gairdneri), Aquaculture 11 (1977) 159-172 [CrossRef].
  13. Jensen J., Madsen P., A user's guide to DMU. A package for analyzing multivariate mixed models, Research Center Foulum, Danish Institute of Animal Science, Tjele, 2000.
  14. Jobling M., Baardvik B.M., The influence of environmental manipulations on inter- and intra-individual variation in food acquisition and growth performance of Arctic charr, Salvelinus alpinus, J. Fish Biol. 44 (1994) 1069-1087 [CrossRef].
  15. Jobling M., Koskela J., Interindividual variations in feeding and growth in rainbow trout during restricted feeding and a subsequent period of compensatory growth, J. Fish Biol. 49 (1996) 658-667 [CrossRef].
  16. Jobling M., Baardvik B.M., Jørgensen E.H., Investigation of food-growth relationships of Arctic charr, Salvelinus alpinus L., using radiography, Aquaculture 81 (1989) 367-372 [CrossRef].
  17. Jobling M., Covès D., Damsgård B., Kristiansen H.R., Koskela J., Petursdottir T.E., Kadri S., Gudmundsson O., Techniques for measuring feed intake, in: Houlihan D., Boujard T., Jobling M. (Eds.), Food Intake in Fish, Blackwell, Oxford, 2001, pp. 49-87.
  18. Johansen S.J.S., Ekli M., Stangnes B., Jobling M., Weight gain and lipid deposition in Atlantic salmon, Salmo salar, during compensatory growth: evidence for lipostatic regulation?, Aquac. Res. 32 (2001) 963-974 [CrossRef].
  19. Kause A., Ritola O., Paananen T., Mäntysaari E., Eskelinen U., Selection against early maturity in large rainbow trout Oncorhynchus mykiss: the quantitative genetics of sexual dimorphism and genotype-by-environment interactions, Aquaculture 228 (2003) 53-68 [CrossRef].
  20. Kause A., Ritola O., Paananen T., Wahlroos H., Mäntysaari E.A., Genetic trends in growth, sexual maturity and skeletal deformations, and rate of inbreeding in a breeding programme for rainbow trout, Aquaculture 247 (2005) 177-187 [CrossRef].
  21. Kennedy B.W., van der Werf J.H.J., Meuwissen T.H.E., Genetic and statistical properties of residual feed intake, J. Anim. Sci. 71 (1993) 3239-3250 [PubMed].
  22. Kenward M.G., Roger J.H., Small sample inference for fixed effects from restricted maximum likelihood, Biometrics 53 (1997) 983-997 [PubMed].
  23. Kinghorn B., Genetic variation in food conversion efficiency and growth in rainbow trout, Aquaculture 32 (1983) 141-155 [CrossRef].
  24. Kolehmainen S.E., Daily feeding rates of bluegill (Lepomis macrochirus) determined by a refined radioisotopic method, J. Fish. Res. Board Can. 31 (1974) 67-74.
  25. Kolstad K., Grisdale-Helland B., Gjerde B., Family differences in feed efficiency in Atlantic salmon (Salmo salar), Aquaculture 241 (2004) 169-177 [CrossRef].
  26. Koots K.R., Gibson J.P., Smith C., Wilton J.W., Analyses of published genetic parameter estimates for beef production traits. 1. Heritability, Anim. Breed. Abstr. 62 (1994) 309-338.
  27. Lynch M., Walsh B., Genetics and Analysis of Quantitative Traits, Sinauer Associates, Sunderland, 1998.
  28. McCarthy I.D., Carter C.G., Houlihan D.F., The effect of feeding hierarchy on individual variability in daily feeding of rainbow trout, Oncorhynchus mykiss (Walbaum), J. Fish Biol. 41 (1992) 257-263.
  29. McCarthy I.D., Houlihan D.F., Carter C.G., Moutou K., Variation in individual consumption rates of fish and its implications for the study of fish nutrition and physiology, P. Nutr. Soc. 52 (1993) 427-436.
  30. McCarthy I.D., Houlihan D.F., Carter C.G., Individual variation in protein turnover and growth efficiency in rainbow trout, Oncorhynchus mykiss. P. Roy. Soc. Lond. B Bio. 257 (1994) 141-147.
  31. NRC National Research Council, Nutrient Requirements of Fish, National Academic Press, Washington DC, 1993.
  32. Pym R.A.E., Nutritional genetics, in: Crawford R.D. (Ed.), Poultry Genetics and Breeding, Elsevier, New York, 1990, pp. 847-876.
  33. Schnyder U., Hofer A., Labroue F., Künzi N., Multiple trait model combining random regressions for daily feed intake with single measured performance traits of growing pigs, Genet. Sel. Evol. 34 (2002) 61-81 [EDP Sciences] [CrossRef] [PubMed].
  34. Schulman N., Tuiskula-Haavisto M., Siitonen L., Mäntysaari E.A., Genetic variation of residual feed consumption in a selected Finnish egg-layer population, Poultry Sci. 73 (1994) 1479-1484.
  35. Schulze V., Roche R., Lorenzo Bermejo J., Looft H., Kalm E., Genetic associations between observed feed intake measurements during growth, feed intake curve parameters and growing-finishing performances of central tested boars, Livest. Prod. Sci. 73 (2002) 199-211 [CrossRef].
  36. Silverstein J.T., Bosworth B.G., Waldbieser G.C., Wolters W.R., Feed intake in channel cat fish: is there a genetic component?, Aquac. Res. 32 (2001) 199-205 [CrossRef].
  37. Snowder G.D., Van Vleck L.D., Estimates of genetic parameters and selection strategies to improve the economic efficiency of postweaning growth in lambs, J. Anim. Sci. 81 (2003) 2704-2713 [PubMed].
  38. Talbot C., Higgins P.J., A radiographic method for feeding studies on fish using metallic iron powder as marker, J. Fish Biol. 23 (1983) 211-220.
  39. Thodesen J., Grisdale-Helland B., Helland S.J., Gjerde B., Feed intake, growth and feed utilization of offspring from wild and selected Atlantic salmon (Salmo salar), Aquaculture 180 (1999) 237-246 [CrossRef].
  40. Thodesen J., Gjerde B., Grisdale-Helland B., Storebakken T., Genetic variation in feed intake, growth and feed utilization in Atlantic salmon (Salmo salar), Aquaculture 194 (2001) 273-281 [CrossRef].
  41. Whittemore C.T., Tullis J.B., Emmans G.C., Protein growth in pigs, Anim. Prod. 46 (1988) 437-445.