Open Access
Genet. Sel. Evol.
Volume 39, Number 3, May-June 2007
Page(s) 225 - 247
Published online 14 April 2007
References of  Genet. Sel. Evol. 39 (2007) 225-247
  1. Bichard M., Problems of across-population genetic evaluation within improvement schemes, in: Proc. 6th Conf. Aust. Assoc. Anim. Breed. Genet., 9-11 February 1987, Perth, pp. 103-111.
  2. Bunter K.L., Macbeth G.M., Evaluating connectedness between pig herds using on-farm performance and central test data, in: Proc. 12th Conf. Aust. Assoc. Anim. Breed. Genet., 6-10 April 1997, Dubbo, pp. 607-610.
  3. Cundiff L.V., Gregory K.E., Long C.R., Genetic variation among and within herds of Angus and Hereford cattle, J. Anim. Sci. 41 (1975) 1270-1280.
  4. Fernando R.L., Gianola D., Grossman M., Identifying all connected subsets in a two-way classification without interaction, J. Dairy Sci. 66 (1983) 1399-1402.
  5. Foulley J.L., Schaeffer L.R., Song H., Wilton J.W., Progeny group size in an organized progeny test program of AI beef bulls using reference sires, Can. J. Anim. Sci. 63 (1983) 17-26.
  6. Foulley J.L., Bouix J., Goffinet B., Elsen J.M., Connectedness in genetic evaluation, in: Gianola D., Hammond K. (Eds.), Advances in Statistical Methods for Genetic Improvement of Livestock, Springer, Heidelberg, 1990, pp. 302-337.
  7. Foulley J.L., Hanocq E., Boichard D., A criterion for measuring the degree of connectedness in linear models of genetic evaluation, Genet. Sel. Evol. 24 (1992) 315-330.
  8. Garrick D.J., Enns R.M., How best to achieve genetic change, in: Proc. Beef Imp. Fed. 35th Annu. Res. Symp. & Annu. Mtg., Lexington, Kentucky, 28-31 May 2003, pp. 48-50.
  9. Hanocq E., Boichard D., Connectedness in the French Holstein cattle population, Genet. Sel. Evol. 31 (1999) 163-176.
  10. Hanocq E., Boichard D., Foulley J.L., A simulation study of the effect of connectedness on genetic trend, Genet. Sel. Evol. 28 (1996) 67-82.
  11. Henderson C.R., Sire evaluation and genetic trend, in: Proc. Anim. Breed. Genet. Symp. in Honor of Dr. Jay L. Lush, Am. Soc. Anim. Sci. and Am. Dairy Sci. Assoc., Champaign, IL, USA, 1973.
  12. Henderson C.R., Comparison of alternative sire evaluation methods, J. Anim. Sci. 41 (1975) 760-770.
  13. Hofer A., Precision of comparisons of estimated breeding values of centrally test pigs across herds of origin, in: Proc. 5th World Congr. Genet. Appl. to Livest. Prod., 7-12 August 1994, Vol. 18, Guelph, pp. 447-450.
  14. Hudson G.F.S., Schaeffer L.R., Wilton J.W., Alternative progeny testing programs for weaning weight and ease of calving in beef cattle, Can. J. Anim. Sci. 60 (1980) 609-620.
  15. Kennedy B.W., Bias and mean square error from ignoring genetic groups in mixed model sire evaluation, J. Dairy Sci. 66 (1981) 689-697.
  16. Kennedy B.W., Moxley J.E., Comparison of genetic group and relationship methods for mixed model sire evaluation, J. Dairy Sci. 58 (1974) 1507-1514.
  17. Kennedy B.W., Trus D., Considerations on genetic connectedness between management units under an animal model, J. Anim. Sci. 71 (1993) 2341-2352 [PubMed].
  18. Kuehn L.A., Implications of connectedness in the genetic evaluation of livestock, Ph.D. Dissertation, Virginia Polytechnic Institute and State University, Blacksburg, USA (2005).
  19. Kullback S., Kullback information, in: Kotz S., Johnson N.L. (Eds.), Encyclopedia of Statistical Sciences, John Wiley and Sons, New York, Vol. 4, 1983, pp. 421-425.
  20. Laloë D., Precision and information in linear models of genetic evaluation, Genet. Sel. Evol. 25 (1993) 557-576.
  21. Laloë D., Phocas F., A proposal of criteria of robustness analysis in genetic evaluation, Livest. Prod. Sci. 80 (2003) 241-256 [CrossRef].
  22. Laloë D., Phocas F., Ménissier F., Considerations on measures of precision and connectedness in mixed linear models of genetic evaluation, Genet. Sel. Evol. 28 (1996) 359-378.
  23. Lewis R.M., Simm G., Selection strategies in sire referencing schemes in sheep, Livest. Prod. Sci. 67 (2000) 129-141 [CrossRef].
  24. Lewis R.M., Crump R.E., Simm G., Thompson R., Assessing connectedness in across-flock genetic evaluations, in: Proc. Brit. Soc. Anim. Sci., 22-24 March 1999, Scarborough, p. 121.
  25. Mathur P.K., Sullivan B.P., Chesnais J.P., Measuring connectedness: concept and application to a large industry breeding program, in: Proc. 7th World Congr. Genet. Appl. to Livest. Prod., 19-23 August 2002, Montpellier, Communication No. 20-13.
  26. Miraei Ashtiani S.R., James J.W., Efficient use of link rams in Merino sire reference schemes, in: Proc 9th Conf. Aust. Assoc. Anim. Breed. Genet., 24-27 June 1991, Melbourne, pp. 388-391.
  27. Miraei Ashtiani S.R., James J.W., Optimum family size for progeny testing in populations with different strains, Genet. Sel. Evol. 25 (1993) 339-352.
  28. NAHMS, Sheep 2001 part I: reference of sheep management in the United States, 2001, sheep01/Sheep01Pt1.pdf [consulted: 06 June 2006].
  29. Peterson P.H., A test for connectedness fitted for the two-way BLUP-sire evaluation, Acta Agric. Scand. 28 (1978) 360-362.
  30. Pollak E.J., Quaas R.L., Definition of group effects in sire evaluation models, J. Dairy Sci. 66 (1983) 1503-1509.
  31. Quaas R.L., Additive genetic model with groups and relationships, J. Dairy Sci. 71 (1988) 1338-1345.
  32. Quaas R.L., Pollak E.J., Modified equations for sire models with groups, J. Dairy Sci. 64 (1981) 1868-1872.
  33. Robinson G.K., Group effects and computing strategies for models for estimating breeding values, J. Dairy Sci. 69 (1986) 3106-3111.
  34. Roden J.A., A comparison of alternative nucleus breeding systems and a sire referencing scheme for sheep improvement, Anim. Sci. 62 (1996) 265-270.
  35. Roso V.M., Schenkel R.S., Miller S.P., Degree of connectedness among groups of centrally tested beef bulls, Can. J. Anim. Sci. 84 (2004) 37-47.
  36. Schaeffer L.R., Song H., Wilton J.W., The evaluation of beef bulls from an organized progeny test program, Can. J. Anim. Sci. 60 (1980) 621-626.
  37. Searle S.R, Linear Models, Wiley and Sons, New York, NY, USA, 1971.
  38. Smith C., Banos G., Selection within and across populations in livestock improvement, J. Anim. Sci. 69 (1991) 2387-2394 [PubMed].
  39. Spike P.L., Freeman A.E., Effect of genetic differences among herds on accuracy of selection and expected genetic change, J. Dairy Sci. 60 (1978) 967-974.
  40. Tong A.K.W., Kennedy B.W., Moxley J.E., Potential errors in sire evaluation from regional genetic differences, J. Dairy Sci. 63 (1980) 627-633.
  41. Tosh J.J., Wilton J.W., Degree of connectedness in mixed models, in: Proc. 4th World Congr. Genet. Appl. to Livest. Prod., 23-27 July 1990, Vol. 13, Edinburgh, pp. 480-483.
  42. Weaber R.L., A simulation study of replacement sire selection and genetic evaluation strategies for large commercial ranches, Ph.D. Thesis, Cornell University, Ithaca, USA (2004).
  43. Weeks D.L., Williams D.R., A note on the determination of connectedness in an N-way cross classification, Technometrics 6 (1964) 319-324 [CrossRef].
  44. Westell R.A., Quaas R.L., van Vleck L.D., Genetic groups in an animal model, J. Dairy Sci. 71 (1988) 1310-1318.