Free Access
Genet. Sel. Evol.
Volume 39, Number 5, September-October 2007
Page(s) 481 - 494
Published online 27 September 2007
References of  Genet. Sel. Evol. 39 (2007) 481-494
  1. Atchley W., Rutledge J.J., Genetic components of size and shape, I. Dynamics of components of phenotypic variability and covariability during ontogeny in the laboratory rat, Evolution 34 (1980) 1161-1173 [CrossRef].
  2. Bates D., Maechler M., Matrix: A Matrix package for R. R-project (2006), [consulted: 6 October 2006].
  3. Chase K., Carrier D.R., Alder F.R., Jarvik T., Ostrander E.A., Lorentzen T.D., Lark K.G., Genetic basis for systems of skeletal quantitative traits: Principal component analysis of the canid skeleton, Proc. Natl. Acad. Sci. USA 99 (2002) 9930-9935 [CrossRef] [PubMed].
  4. de los Campos G., Gianola D., Heringstad B., A structural equation model for describing relationships between somatic cell score and milk yield in first-lactation dairy cows, J. Dairy Sci. 89 (2006) 4445-4455 [PubMed].
  5. Hashiguchi S., Morishima H., Estimation of genetic contribution of principal components to individual variates concerned, Biometrics 25 (1969) 9-15 [PubMed].
  6. Hazel L.N., The genetic basis for constructing selection indexes, Genetics 28 (1943) 476-490 [PubMed].
  7. Heringstad B., Chang Y.M., Gianola D., Klemetsdal G., Multivariate threshold model analysis of clinical mastitis in multiparous Norwegian dairy cattle, J. Dairy Sci. 87 (2004) 3038-3046 [PubMed].
  8. Heringstad B., Chang Y.M., Gianola D., Klemetsdal G., Genetic analysis of clinical mastitis, milk fever, ketosis, and retained placenta in three lactations of Norwegian red cows, J. Dairy Sci. 88 (2005) 3273-3281 [PubMed].
  9. Johnson R.A., Wichern D.W., Applied multivariate statistical analysis, 5th edn., Prentice Hall, 2002.
  10. Kirkpatrick M., Meyer K., Direct estimation of genetic principal components: simplified analysis of complex phenotypes, Genetics 168 (2004) 2295-2306 [CrossRef] [PubMed].
  11. Leclerc A., Fikse W.F., Ducrocq V., Principal components and factorial approaches for estimating genetic correlations in international sire evaluation, J. Dairy Sci. 88 (2005) 3306-3315 [PubMed].
  12. Manly Bryan F.J., Multivariate Statistical Methods. A primer, Chapman & Hall/CRC, 2005.
  13. Mardia K.V., Kent J.T., Bibby J.M., Multivariate analysis, 7th reprinting, Academic Press, 1979.
  14. Martin A.D., Quinn K.M., MCMCpack: Markov chain Monte Carlo (MCMC) package. R-project (2006), [consulted: 6 October 2006].
  15. Meyer K., Kirkpatrick M., Restricted maximum likelihood estimation of genetic principal components and smoothed (co)variance matrices, Genet. Sel. Evol. 37 (2005) 1-30 [CrossRef] [PubMed] [EDP Sciences].
  16. Peña D., Análisis de datos multivariantes, Mc Graw Hill, 2002.
  17. Plummer M., Best N., Cowles K., Vines K., Coda: output analysis and diagnostics for MCMC. R-project (2006), [consulted: 6 October 2006].
  18. R Development Core Team, R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL, 2006 [consulted: 6 October 2006].
  19. Schaeffer L.R., Multiple-country comparison of dairy sires, J. Dairy Sci. 77 (1994) 2671-2678 [PubMed].
  20. Sorensen D., Gianola D., Likelihood, Bayesian, and MCMC methods in quantitative genetics, Springer-Verlag, New York, 2002.
  21. Spearman C., General intelligence, objectively determined and measured, Amer. J. Psychol. 15 (1904) 201-293 [CrossRef].
  22. Venables W.N., Ripley B.D., Modern applied statistics with S., 4th edn., Springer, New York, 2002.
  23. Wood P.D.P., Algebraic model of the lactation curve in cattle, Nature 216 (1967) 164-169 [CrossRef].
  24. Wright S., On the nature of size factors, Genetics 3 (1918) 367-374 [PubMed].
  25. Zwald N.R., Weigel K.A., Chang Y.M., Welper R.D., Clay J.S., Genetic selection for health traits using producer-recorded data. II. Genetic correlations, disease probabilities, and relationships with existing traits, J. Dairy Sci. 87 (2004) 4295-4302 [PubMed].