Free Access
Genet. Sel. Evol.
Volume 40, Number 2, March-April 2008
Page(s) 177 - 194
Published online 27 February 2008
References of  Genet. Sel. Evol. 40 (2008) 177-194
  1. Diggle P.J., Liang K.Y., Zeger S.L., Analysis of longitudinal data, Oxford University Press, 1994.
  2. Druet T., Jaffrézic F., Boichard D., Ducrocq V., Modeling lactation curves and estimation of genetic parameters for first lactation test-day records of French Holstein cows, J. Dairy Sci. 86 (2003) 2480-2490 [PubMed].
  3. Fernando R.L., Grossman M., Marker-assisted selection using best linear unbiased prediction, Genet. Sel. Evol. 21 (1989) 467-477 [CrossRef] [EDP Sciences].
  4. Grignola F.E., Hoeschele I., Tier B., Mapping quantitative trait loci in outcross populations via residual maximum likelihood, Genet. Sel. Evol. 28 (1996) 479-490 [CrossRef] [EDP Sciences].
  5. Jaffrézic F., Pletcher S.D., Statistical models for estimating the genetic basis of repeated measures and other function-valued traits, Genetics 156 (2000) 913-922 [PubMed].
  6. Jaffrézic F., Thompson R., Hill W.G., Structured antedependence models for genetic analysis of multivariate repeated measures in quantitative traits, Genet. Res. 82 (2003) 55-65 [CrossRef] [PubMed].
  7. Jakobsen J.H., Madsen P., Jensen J., Pedersen J., Christensen L.G., Sorensen D.A., Genetic parameters for milk production and persistency for Danish Holsteins estimated in random regression models using REML, J. Dairy Sci. 85 (2002) 1607-1616 [PubMed].
  8. Jensen J., Mantysaari E., Madsen P., Thompson R., Residual maximum likelihood estimation of (co)variance components in multivariate mixed linear models using average information, J. Indian Soc. Agric. Stat. 49 (1997) 215-236.
  9. Kirkpatrick M., Heckman N., A quantitative genetic model for growth, shape, reaction norms, and other infinite-dimensional characters, J. Math. Biol. 27 (1989) 429-450 [CrossRef] [PubMed] [MathSciNet].
  10. Lidauer M., Pedersen J., Pösö J., Mäntysaari E.A., Strandén I., Madsen P., Nielen U.S., Eriksson J.-A., Johansson K., Aamand G.P., Joint Nordic Test Day Model: Evaluation Model, Interbull Bull. 35 (2006) 103-107.
  11. Lund M.S., Sorensen P., Madsen P., Linkage analysis in longitudinal data using random regression, Proc. 7th WCGALP, 32, 713-716, CD-rom Communication No 21-28, Montpellier, France, 2002.
  12. Lund M.S., Sorensen P., Guldbrandsten B., Sorensen D.A., Multitrait fine mapping of quantitative trait loci using combined linkage disequilibria and linkage analysis, Genetics 163 (2003) 405-410 [PubMed].
  13. Ma C.X., Casella G., Wu R., Functional mapping of quantitative trait loci underlying the character process: a theoretical framework, Genetics 161 (2002) 1751-1762 [PubMed].
  14. Macgregor S., Knott S.A., White I., Visscher P.M., Longitudinal variance-components analysis of the Framingham heart study data, BMC Genetics 4 (2003) S22 [CrossRef] [PubMed], 5 p.
  15. Macgregor S., Knott S.A., White I., Visscher P.M., Quantitative trait locus analysis of longitudinal quantitative trait data in complex pedigrees, Genetics 171 (2005) 1365-1376 [CrossRef] [PubMed].
  16. Madsen P., Sorensen P., Su G., Damgaard L.H., Thomsen H., Labouria R., DMU - a package for analyzing multivariate mixed models, Proc. 8th WCGALP, CD-rom Communication No 27-11, Belo Horizonte, Brazil, 2006.
  17. Meuwissen T.H.E., Goddard M.E., Fine mapping of quantitative traits using linkage disequilibria with closely linked marker loci, Genetics 155 (2000) 421-430 [PubMed].
  18. Meyer K., Grasser H.U., Hammond K., Estimates of genetic parameters for first lactation test day production of Australian black and white cows, Livest. Prod. Sci. 21 (1989) 177-199 [CrossRef].
  19. Moreno C.R., Elsen J.M., Le Roy P., Ducrocq V., Interval mapping methods for detecting QTL affecting survival and time-to-event phenotypes, Genet. Res. 85 (2005) 139-149 [CrossRef] [PubMed].
  20. Pletcher S.D., Geyer C.J., The genetic analysis of age-dependent traits: modeling a character process, Genetics 153 (1999) 825-833 [PubMed].
  21. Pletcher S.D., Jaffrézic F., Generalized character process models: estimating the genetic basis of traits that cannot be observed and that change with age or environmental conditions, Biometrics 58 (2002) 157-162 [CrossRef] [PubMed] [MathSciNet].
  22. Rodriguez-Zas S.L., Southey B.R., Heyen D.W., Lewin H.A., Detection of quantitative trait loci influencing dairy traits using a model for longitudinal data, J. Dairy Sci. 85 (2002) 2681-2691 [PubMed].
  23. Wang T., Fernando R.H., van der Beek S., van Arendonk J.A.M., Covariance between relatives for a marked quantitative trait locus, Genet. Sel. Evol. 27 (1995) 251-274 [CrossRef] [EDP Sciences].
  24. White I.M.S., Thompson R., Brotherstone S., Genetic and environmental smoothing of lactation curves with cubic splines, J. Dairy. Sci. 82 (1999) 632-638 [PubMed].
  25. Wu R., Hou W., A hyperspace model to decipher the genetic architecture of developmental processes: allometry meets ontogeny, Genetics 172 (2006) 627-637 [CrossRef] [PubMed].