Free Access
Genet. Sel. Evol.
Volume 40, Number 3, May-June 2008
Page(s) 265 - 278
Published online 10 April 2008
References of  Genet. Sel. Evol. 40 (2008) 265-278
  1. Alvarez-Castro J.M., Carlborg O., A unified model for functional and statistical epistasis and its application in quantitative trait loci analysis, Genetics 176 (2007) 1151-1167 [CrossRef] [PubMed].
  2. Blangero J., Williams J.T., Almasy L., Quantitative trait locus mapping using human pedigrees, Hum. Biol. 72 (2000) 35-62 [PubMed].
  3. Blangero J., Williams J.T., Almasy L., Variance component methods for detecting complex trait loci, Adv. Genet. 42 (2001) 151-181 [PubMed].
  4. Carlborg O., Haley C.S., Epistasis: Too often neglected in complex trait studies? Nat. Rev. Genet. 5 (2004) 618-625 [CrossRef] [PubMed].
  5. Caron H., van Schaik B., van der Mee M., Baas F., Riggins G., van Sluis P., Hermus M.-C., van Asperen R., Boon K., Voûte P.A., Heisterkamp S., van Kampen A., Versteeg R., The human transcriptome map: Clustering of highly expressed genes in chromosomal domains, Science 291 (2001) 1289-1292 [CrossRef] [PubMed].
  6. Casella G., Empirical Bayes Gibbs sampling, Biostatistics 2 (2001) 485-500 [CrossRef] [PubMed].
  7. Cherny S.S., Sham P.C., Cardon L.R., Introduction to the special issue on variance components methods for mapping quantitative trait loci, Behav. Genet. 34 (2004) 125-126 [CrossRef].
  8. Cockerham C.C., An extension of the concept of partitioning hereditary variance for analysis of covariances among relatives when epistasis is present, Genetics 39 (1954) 859-882 [PubMed].
  9. Dallas J.F., Estimation of microsatellite mutation rates in recombinant inbred strains of mouse, Mamm. Genome 3 (1992) 452-456 [CrossRef] [PubMed].
  10. Ellegren H., Mutation rates at porcine microsatellite loci, Mamm. Genome 6 (1995) 376-377 [CrossRef] [PubMed].
  11. Georges M., Coppieters W., Charlier C., Polymorphic miRNA-mediated gene regulation: Contribution to phenotypic variation and disease, Curr. Opin. Genet. Dev. 17 (2007) 166-176 [CrossRef] [PubMed].
  12. Goddard M.E., Hayes B.J., McPartlan H.C., Chamberlain A.J., Can the same genetic markers be used in multiple breeds? in: Proceedings of the 8th World Congress on Genetics Applied to Livestock Production, 2006, Belo Horizonte, Brazil, pp. (paper number) 22-16.
  13. Jannink J.-L., Fernando R.L., On the Metropolis-Hastings acceptance probability to add or drop a quantitative trait locus in Markov chain Monte Carlo-based Bayesian analyses, Genetics 166 (2004) 641-643 [CrossRef] [PubMed].
  14. Kao C.-H., Zeng Z.-B., Modeling epistasis of quantitative trait loci using Cockerham's model, Genetics 160 (2002) 1243-1261 [PubMed].
  15. Kroymann J., Mitchell-Olds T., Epistasis and balanced polymorphism influencing complex trait variation, Nature 435 (2005) 95-98 [CrossRef] [PubMed].
  16. Kruglyak L., Prospects for whole-genome linkage disequilibrium mapping of common disease genes, Nat. Genet. 22 (1999) 139-144 [CrossRef] [PubMed].
  17. Lee S.H., van der Werf J.H.J., The efficiency of designs for fine-mapping of quantitative trait loci using combined linkage disequilibrium and linkage, Genet. Sel. Evol. 36 (2004) 145-161 [CrossRef] [PubMed] [EDP Sciences].
  18. Lee S.H., van der Werf J.H.J., The role of pedigree information in combined linkage disequilibrium and linkage mapping of quantitative trait loci in a general complex pedigree, Genetics 169 (2005) 455-466 [CrossRef] [PubMed].
  19. Lee S.H., van der Werf J.H.J., Simultaneous fine mapping of multiple closely linked quantitative trait loci using combined linkage disequilibrium and linkage with a general pedigree, Genetics 173 (2006) 2329-2337 [CrossRef] [PubMed].
  20. Lee S.H., van der Werf J.H.J., Using dominance relationship coefficients based on linkage disequilibrium and linkage with a general complex pedigree to increase mapping resolution, Genetics 174 (2006) 1009-1016 [CrossRef] [PubMed].
  21. Lee S.H., van der Werf J.H., Tier B., Combining the meiosis Gibbs sampler with the random walk approach for linkage and association studies with a general complex pedigree and multi marker loci, Genetics 171 (2005) 2063-2072 [CrossRef] [PubMed].
  22. MacCluer J.W., VandeBerg J.L., Read B., Ryder O.A., Pedigree analysis by computer simulation, Zoo Biology 5 (1986) 147-160 [CrossRef].
  23. Maloof J.N., Quantitative genetics: Small but not forgotten, Heredity 96 (2006) 1-2 [PubMed].
  24. Meuwissen T.H.E., Goddard M.E., Fine mapping of quantitative trait loci using linkage disequilibria with closely linked marker loci, Genetics 155 (2000) 421-430 [PubMed].
  25. Meuwissen T.H.E., Goddard M.E., Prediction of identity by descent probabilities from marker-haplotypes, Genet. Sel. Evol. 33 (2001) 605-634 [CrossRef] [PubMed] [EDP Sciences].
  26. Mitchell B.D., Ghosh S., Schneider J.L., Birznieks G., Blangero J., Power of variance component linkage analysis to detect epistasis, Genet. Epidemiol. 14 (1997) 1017-1022 [CrossRef] [PubMed].
  27. Morris A.P., Whittaker J.C., Balding D.J., Little loss of information due to unknown phase for fine-scale linkage disequilibrium mapping with single-nucleotide-polymorphism genotype data, Am. J. Hum. Genet. 74 (2004) 945-953 [CrossRef] [PubMed].
  28. Orgogozo V., Broman K.W., Stern D.L., High-resolution quantitative trait locus mapping reveals sign epistasis controlling ovariole number between two drosophila species, Genetics 173 (2006) 197-205 [CrossRef] [PubMed].
  29. Perez-Enciso M., Fine mapping of complex trait genes combining pedigree and linkage disequilibrium information: A Bayesian unified framework, Genetics 163 (2003) 1497-1510 [PubMed].
  30. Purcell S., Sham P.C., Epistasis in quantitative trait locus linkage analysis, Behav. Genet. 34 (2004) 143-152 [CrossRef] [PubMed].
  31. Sillanpää M.J., Gasbarra D., Arjas E., Comment on "On the Metropolis-Hastings acceptance probability to add or drop a quantitative trait locus in Markov chain Monte Carlo-based Bayesian analyses", Genetics 167 (2004) 1037 [CrossRef] [PubMed].
  32. Sobel E., Lange K., Descent graphs in pedigree analysis: Applications to haplotyping, location scores, and marker-sharing statistics, Am. J. Hum. Genet. 58 (1996) 1323-1337 [PubMed].
  33. Steinmetz L.M., Sinha H., Richards D.R., Spiegelman J.I., Oefner P.J., McCusker J.H., Davis R.W., Dissecting the architecture of a quantitative trait locus in yeast, Nature 416 (2002) 326-330 [CrossRef] [PubMed].
  34. Sved J.A., Linkage disequilibrium and homozygosity of chromosome segments in finite populations, Theor. Popul. Biol. 2 (1971) 125-141 [CrossRef] [PubMed].
  35. Thompson E.A., Heath S.C., Estimation of conditional multilocus gene identity among relatives, in: Seillier-Moiseiwitsch F. (Ed.), Statistics in molecular biology and genetics, IMS lecture notes, Institute of Mathematical Statistics, American Mathematical Society, Providence, RI, 1999, pp. 95-113.
  36. Wang K., Score tests for epistasis models on quantitative traits using general pedigree data, Genet. Epidemiol. 25 (2003) 314-326 [CrossRef] [PubMed].
  37. Weber J.L., Wong C., Mutation of human short tandem repeats, Hum. Mol. Genet. 2 (1993) 1123-1128 [CrossRef] [PubMed].
  38. Yi N., Xu S., Allison D.B., Bayesian model choice and search strategies for mapping interacting quantitative trait loci, Genetics 165 (2003) 867-883 [PubMed].