Free Access
Issue
Genet. Sel. Evol.
Volume 38, Number 5, September-October 2006
Page(s) 551 - 563
DOI https://doi.org/10.1051/gse:2006021
Published online 06 September 2006
Genet. Sel. Evol. 38 (2006) 551-563
DOI: 10.1051/gse:2006021

Comparative analysis of vertebrate EIF2AK2 (PKR) genes and assignment of the equine gene to ECA15q24-q25 and the bovine gene to BTA11q12-q15

Andrey A. Perelygina, Teri L. Learb, Andrey A. Zharkikhc and Margo A. Brintona

a  Biology Department, Georgia State University, Atlanta, GA 30302, USA
b  Department of Veterinary Science, M.H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA
c  Bioinformatics Department, Myriad Genetics, Inc., Salt Lake City, UT 84108, USA

(Received 19 January 2006; accepted 13 April 2006; published online 6 September 2006)

Abstract - The structures of the canine, rabbit, bovine and equine EIF2AK2 genes were determined. Each of these genes has a 5' non-coding exon as well as 15 coding exons. All of the canine, bovine and equine EIF2AK2 introns have consensus donor and acceptor splice sites. In the equine EIF2AK2 gene, a unique single nucleotide polymorphism that encoded a Tyr329Cys substitution was detected. Regulatory elements predicted in the promoter region were conserved in ungulates, primates, rodents, Afrotheria (elephant) and Insectifora (shrew). Western clawed frog and fugu EIF2AK2 gene sequences were detected in the USCS Genome Browser and compared to those of other vertebrate EIF2AK2 genes. A comparison of EIF2AK2 protein domains in vertebrates indicates that the kinase catalytic domains were evolutionarily more conserved than the nucleic acid-binding motifs. Nucleotide substitution rates were uniform among the vertebrate sequences with the exception of the zebrafish and goldfish EIF2AK2 genes, which showed substitution rates about 20% higher than those of other vertebrates. FISH was used to physically assign the horse and cattle genes to chromosome locations, ECA15q24-q25 and BTA11q12-15, respectively. Comparative mapping data confirmed conservation of synteny between ungulates, humans and rodents.


Key words: translation initiation factor / innate immunity / phylogenetic analysis / FISH mapping

Correspondence and reprints: aperelygin@gsu.edu

© INRA, EDP Sciences 2006